Accueil🇫🇷Chercher

Microbiote

Le microbiote est l'ensemble des micro-organismes — bactéries, microchampignons, protistes — vivant dans un environnement spécifique (appelé microbiome) chez un hôte (animal : zoobiote ; végétal : phytobiote ; sol : microbiote tellurique ; air : aérobiote) ou une matière (d'origine animale ou végétale). Ces micro-organismes peuvent être présents sans impact sur leur hôte (commensalisme) ou entrer en interaction étroite avec lui (mutualisme, parasitisme non létal). Chaque organisme impliqué est qualifié de microbionte ou symbionte, par opposition au pathobionte, micro-organisme opportuniste résidant au sein du microbiome, et potentiellement pathogène.

Escherichia coli, l'une des espèces bactériennes sous-dominantes du microbiote intestinal.

Chez les animaux, la communauté microbienne la plus étudiée est le microbiote humain qui est très varié (microbiote intestinal, vaginal, cutané…). Le microbiote des plantes et du sol font également l'objet de nombreuses études.

Candida albicans est l'un des nombreux champignons qui peut naturellement se développer dans l'intestin, contribuant à la digestion, mais pathogène s'il se surdéveloppe ou colonise d'autres organes.
Toute croissance anormale de cet organisme (Clostridium difficile) est nuisible, voire fatale pour l'hĂ´te.

Études et recherches

Les moyens techniques permettant d’étudier le microbiote ont longtemps été limités, seule une minorité d'espèces bactériennes pouvant être cultivée in vitro. La mise au point des techniques de séquençage haut débit du matériel génétique à partir de 2005 ont donné un nouvel élan à cette recherche, avec la construction de banques de clones métagénomiques contenant de grands fragments du métagénome intestinal[1]. Cette technique a notamment remis en cause le nombre de micro-organismes qui était estimé dans les années 1970 à dix ou cent fois le nombre moyen de cellules de l'organisme humain.

Une Ă©tude en 2016[2] Ă©value le microbiome (constituĂ© essentiellement du microbiote intestinal humain) Ă  environ 39 000 milliards de bactĂ©ries et celui des cellules du corps humain moyen Ă  environ 30 000 milliards, le rapport se rapprochant ainsi de 1:1 plutĂ´t que de 10:1 ou 100:1. Chaque humain abriterait 200 Ă  250 espèces diffĂ©rentes de bactĂ©ries[3]. Ces caractĂ©ristiques justifient que le microbiote intestinal, couramment appelĂ© « flore intestinale », soit considĂ©rĂ© comme un organe spĂ©cifique, et que l'homme symbiotique soit surnommĂ© Homo microbicus[4]. Au mĂŞme titre que le microbiote intestinal (et plus gĂ©nĂ©ralement du microbiote de l'organisme humain), il existe Ă©galement un microbiote des plantes[5], et par extension un microbiote du sol (de la rhizosphère notamment[6]) et de la surface des fruits[7] et de l’ocĂ©an, mais le mot « microbiote » est le plus souvent utilisĂ© pour les animaux.

Un autre pan de la recherche in vivo porte sur les animaux ou les végétaux dont le microbiote est contrôlé puisqu'ils sont étudiés dans un environnement sans bactéries dit gnotobiotique (gnotos, « connu », biota, « biote »)[8]. La science qui les étudie est la gnotobiologie[9].

La théorie hologénomique de l'évolution (en) postule que les forces évolutives agissent sur l'holobionte (animal ou plante associé à leurs micro-organismes) et que le devenir évolutif des symbiotes est lié à celui de l'hôte.

Les recherches n'ont pas dépassé le stade exploratoire et les connaissances dans ce domaines sont encore limitées. Ces hypothèses scientifiques prometteuses donnent lieu à des spéculations sur le microbiote intestinal humain, parfois qualifié par les vulgarisateurs de « deuxième cerveau »[10].

Dans le monde animal

Chez les vertébrés le microbiote s'acquiert pendant la gestation, au moment de la naissance et avec l'allaitement.

On a notamment montré l'importance de plusieurs types de microbiotes :

Microbiote intestinal

Le microbiote intestinal est l'ensemble des micro-organismes (archées, bactéries, eucaryotes) qui se trouvent dans le tube digestif des animaux. Il ne s'agit pas uniquement de bactéries intestinales, mais également de celles de l'estomac.

Microbiote cutané

Le microbiote cutané est l'ensemble des micro-organismes situés sur la peau d'un humain.

Microbiote vaginal

Le microbiote vaginal, ou flore vaginale, est l'ensemble des micro-organismes qui se trouvent dans le vagin. Ils permettent de limiter les infections en créant une compétition avec les germes pathogènes. Il est constitué en majorité de bactéries appartenant au genre Lactobacillus. Le microbiote vaginal est normalement très stable, essentiellement composée de quatre genres de bactéries de types lactobacilles[11]. Les relations sexuelles sont l'occasion d'échanges (de « bonnes bactéries » ou parfois de pathogènes bactériens ou viraux) entre les microbiotes des partenaires[12].

Le bacille de Döderlein en est l'un des principaux constituants[13].

La réduction du pH par la production d'acide lactique assure un rôle anti-pathogène (barrière physique, production de substances microbicides). On retrouve aussi une minorité de bactérie anaérobies telles que Gardnerella vaginalis ou Candida albicans qui, lorsqu’elles prolifèrent de façon anormale, sont responsables d'infections vaginales : un changement de la composition du microbiote vaginal peut être associé à une vaginose.

Microbiote placentaire

Une étude récente montre que de petites quantités d’ADN issu de diverses espèces bactériennes sont présentes dans le placenta même lors de grossesses normales[14]. Ces espèces ressemblent plus à celles présentes dans la bouche qu’à celles présentes dans d’autres tissus comme l’intestin, la peau ou le vagin. La présence de taxa tels que Burkholderia a été observée dans les Placentas des enfants nés prématurés, tandis que Paenibacillus est abondant dans les spécimens placentaires de bébés nés à des termes compris dans les limites de la normale[15].

Microbiote des organes sexuels masculins

Chez l'homme et les autres mammifères mâles, le pénis, le gland du pénis[16], le prépuce, l'urètre[17] - [18], le sperme et la prostate[19], et l'ensemble du tractus génital[20] et des organes sexuels masculins abritent aussi un microbiote spécifique, qui peut notamment être modifié par la circoncision[21] - [22] - [23].

R. Mändar dĂ©crivant, en 2013, les liens entre les Ă©quilibres microbiens du tractus gĂ©nital masculin et la santĂ©, parle d'Ă©cologie du tractus gĂ©nital[24]. Au dĂ©but des annĂ©es 2010, malgrĂ© un nombre exponentiel de publication sur le microbiote humain, le microbiome gĂ©nital masculin reste peu explorĂ© : en , la base de donnĂ©es PubMed contenait environ 4 200 publications relatives au microbiome humain, mais seulement sept portaient sur la caractĂ©risation des communautĂ©s microbienne du pĂ©nis, quatre sur celles de l’urètre, deux sur la couronne du gland, et une seule sur l'ensemble du tractus gĂ©nital masculin.

Microbiote des plantes (et du sol notamment)

Taille et diversité des organismes du sol.

On a longtemps cru que le microbiote des plantes était « externe » et principalement rhizosphérique, c'est-à-dire souterrain, puis des symbioses fongiques et bactériennes ont été mises en évidence chez de nombreuses plantes et plus récemment des symbioses microbiennes ont été identifiées à l'intérieur des parties aériennes d'arbres d'essences pionnières (endosymbiose qui leur permet de mieux capter l'azote atmosphérique et de pousser sur des substrats ultra-pauvres (« oligotrophes »). Le « microbiote du sol » contribue aussi à la détoxication naturelle de certains sols[25].

Le microbiote du sol intimement associé au système racinaire des plantes leur permet à la fois de mieux exploiter et de mieux enrichir leur environnement, au profit d'une communauté microbienne qui peut être modifiée par le contexte environnemental, et notamment par la teneur en éléments nutritifs du sol. Certains des microbes associés aux plantes peuvent aussi entrer en rivalité avec la plante ou d'autres organismes symbiotes pour obtenir des nutriments, tout en ayant des propriétés utiles à la productivité de la plante et du milieu.

On ignore encore comment le système immunitaire des plantes régule et coordonne la reconnaissance microbienne en fonction ou non de repères nutritionnels lors de l'assemblage de son microbiome.

Une étude récente a montré chez la plante modèle Arabidopsis thaliana qu'un réseau de gènes contrôle la réponse au "stress phosphate" en modifiant la structure de la communauté du microbiome racinaire, même dans des conditions non stressantes pour le phosphate. Un mécanisme moléculaire semble réguler l'équilibre entre besoins nutritionnels et de défense en faisant passer le besoin de nourriture avant le besoin de défense. Mieux comprendre ces processus permettrait d'augmenter la performance des plantes en les aidant à renforcer leur microbiome[26].

Parmi les enjeux de la recherche figurent le besoin de mesurer l'activité de ce microbiote[27], de comprendre les conséquences écologiques, agronomiques et sanitaires des changements de microbiotes par exemple induits par la manipulation ou le stockage de terre arable[28], le dérèglement climatique, l'augmentation générale du taux de CO2 dans l'environnement[29] - [30] - [31] - [32], la salinisation, l'acidification de l'air, des pluies et acidification des eaux douces et des sols, les rotations sylvicoles[33], la pollution (par les hydrocarbures par exemple[34]), les biocides et les pesticides[35] (dont le glyphosate devenu le désherbant le plus utilisé au monde et dont une étude de 1982 concluait qu'il a « des effets considérables sur les microorganismes du sol »[36]. On a aussi montré que l'introduction de plantes exotiques[37] et le développement de plantes invasives[38] altéraient la structure et le fonctionnement du microbiote naturel présent dans le sol.

Microbiote des aliments

Microbiote des produits laitiers

Les chercheurs ont démontré que le microbiote natif du lait cru servant à élaborer les fromages au lait cru est le régulateur efficace des pathogènes à cœur et en surface de ce type de transformation alimentaire. Cette protection naturelle s'exerce notamment à l'encontre de Listeria monocytogenes, une bactérie pathogène responsable de la listériose[39]

AĂ©robiote

Au cours des annĂ©es 2010, des travaux scientifiques ont dĂ©montrĂ© l'existence de communautĂ©s de micro-organismes rassemblĂ©s par centaines de milliers dans la troposphère et les premiers kilomètres de la stratosphère, jusqu'Ă  15 km au-dessus de la surface de la Terre[40]. La circulation atmosphĂ©rique favorise le transport aĂ©rien de diverses espèces de bactĂ©ries, de virus et de champignons qui ont la capacitĂ© de rĂ©sister au rayonnement UV, de s'accommoder du manque d'eau et de se protĂ©ger contre l'action d'agents d'oxydation tels que l'ozone. Dans le ciel, les populations microbiennes survivent grâce aux nutriments que constituent les matières carbonĂ©es prĂ©sentes dans l'atmosphère terrestre[40]. Une Ă©tude, publiĂ©e en 2017, dĂ©crit la formation, sur le sol de la Sierra Nevada, en Espagne, d'agrĂ©gats de virus tombĂ©s du ciel. Les courants aĂ©riens sont suspectĂ©s de transporter autour de la planète des microbes pathogènes responsables de la maladie de Kawasaki ou de la maladie Ă  coronavirus 2019[40].

Notes et références

  1. Marie-Christine Champomier-Vergès, Monique Zagorec, La métagénomique. Développements et futures applications, éditions Quae, , p. 57.
  2. (en) Ron Sender, Shai Fuchs et Ron Milo, « Revised Estimates for the Number of Human and Bacteria Cells in the Body », PLOS Biology, vol. 14, no 8,‎ , article no e1002533 (DOI 10.1101/036103, lire en ligne, consulté le ).
  3. Florence Rosier, « Comment l'INRA transforme les fèces en or », Le Monde, Science et médecine,‎ , p. 3
    Cite Dusko Ehrlich, dir recherche INRA
  4. Philippe Kourilsky, Le Jeu du hasard et de la complexité : La nouvelle science de l’immunologie, Odile Jacob, (ISBN 2738131549).
  5. (en) Marilene Silva Lima, Edleide Maria Freitas Pires, Maria Inês Sucupira Maciel et Vanusa Alves Oliveira, « Quality of minimally processed guava with different types of cut, sanification and packing », Food Science and Technology, Campinas), vol. 30, no 1,‎ , p. 79–87 (ISSN 1678-457X, DOI 10.1590/s0101-20612010000100012, lire en ligne, consulté le ).
  6. (en) Pascal A. Niklaus et Christian Körner, « Responses of soil microbiota of a late successional alpine grassland to long term CO2 enrichment », Plant and Soil, vol. 184, no 2,‎ 1996-06-01page=219–229, p. 219–229 (ISSN 1573-5036, DOI 10.1007/BF00010451, résumé).
  7. (en) B. A. Hungate, C.H. Jaeger III, G. Gamara et F.S. Chapin III, « Soil microbiota in two annual grasslands: responses to elevated atmospheric CO2 », Oecologia, vol. 124, no 4,‎ , p. 589–598 (ISSN 0029-8549 et 1432-1939, DOI 10.1007/s004420000405, lire en ligne [PDF], consulté le ).
  8. « Définitions : gnotobiotique - Dictionnaire de français Larousse », sur larousse.fr (consulté le )
  9. « Utilisation d'animaux axéniques et d'animaux à flore contrôlée pour l'étude des interactions entre l'hôte, sa flore et les aliments qu'il ingère. », « Gnotobiologie », sur termsciences.fr (consulté le ).
  10. Christine Durif-Bruckert, « Le microbiote : cet inconnu qui réside en nous », Med Sci (Paris), vol. 32, no 11,‎ , p. 1009-1015.
  11. (en) Jacques Ravel, Pawel Gajer, Zaid Abdo, G. Maria Schneider, Sara S. K. Koenig, Stacey L. McCulle, Shara Karlebach, Reshma Gorle, Jennifer Russell, Carol O. Tacket, Rebecca M. Brotman, Catherine C. Davis, Kevin Ault, Ligia Peralta, Larry J. Forney et al., « Vaginal microbiome of reproductive-age women », Proceedings of the National Academy of Sciences PNAS, vol. 108 (Suppl 1),‎ , p. 4680–7 (PMID 20534435, PMCID PMC3063603, DOI 10.1073/pnas.1002611107, lire en ligne [PDF], consulté le ).
  12. (en) Dan Danielsson, Per Kristen Teigen et Harald Moi, « The genital econiche: focus on microbiota and bacterial vaginosis », Annals of the New York Academy of Sciences, vol. 1230, no 1,‎ , p. 48–58 (ISSN 0077-8923, DOI 10.1111/j.1749-6632.2011.06041.x, lire en ligne, consulté le ).
  13. J.-P. Lepargneur et V Rousseau, « Rôle protecteur de la flore de Doderleïn », Journal de gynécologie obstétrique et biologie de la reproduction, vol. 31, no 5,‎ , p. 485-494 (PMID 12379833, DOI JGYN-09-2002-31-5-0368-2315-101019-ART7, résumé).
  14. (en) K. Aagaard, J. Ma, K. M. Antony, R. Ganu, J. Petrosino et J. Versalovic, « The Placenta Harbors a Unique Microbiome », Science Translational Medicine,‎ .
  15. Pierre Popowski, Pour leur santé, laissez-les se salir, Paris, S. Leduc, , 239 p. (ISBN 979-10-285-0453-3), p. 53
  16. (en) Robert M. Kunyera, Comparative Study For The Analysis Of The Microbiota Of The Glans Penis And The Vagina Of The Olive Baboons (Papio Anubis) (Dissertation en vue de l'obtention de "Master of science decree in tropical and infectious diseases"), University of Nairobi, (lire en ligne [PDF]).
  17. (en) David E. Nelson, Qunfeng Dong, Barbara Van Der Pol et Evelyn Toh, « Bacterial Communities of the Coronal Sulcus and Distal Urethra of Adolescent Males », PLOS ONE, vol. 7, no 5,‎ , e36298 (ISSN 1932-6203, PMID 22606251, PMCID PMC3350528, DOI 10.1371/journal.pone.0036298, lire en ligne, consulté le ).
  18. (en) J. Dennis Fortenberry, « Urethral Microbiome, Adolescent Males, Project », dans Encyclopedia of Metagenomics: Environmental Metagenomics, Springer US, (ISBN 978-1-4899-7475-4, DOI 10.1007/978-1-4899-7475-4_528.pdf, résumé), p. 741–741.
  19. (en) Dongsheng Hou, Xia Zhou, Xue Zhong et Matt Settles, « Microbiota of the seminal fluid from healthy and infertile men », Fertility and sterility, vol. 100, no 5,‎ , p. 1261–1269 (ISSN 0015-0282, PMID 23993888, PMCID 3888793, DOI 10.1016/j.fertnstert.2013.07.1991, lire en ligne, consulté le ).
  20. (en) Reet Mändar, « Microbiota of male genital tract: impact on the health of man and his partner », Pharmacological Research, vol. 69, no 1,‎ , p. 32–41 (ISSN 1096-1186, PMID 23142212, DOI 10.1016/j.phrs.2012.10.019, résumé).
  21. (en) Lance B. Price, Cindy M. Liu, Kristine E. Johnson et Maliha Aziz, « The Effects of Circumcision on the Penis Microbiome », PLOS ONE, vol. 5, no 1,‎ , e8422 (ISSN 1932-6203, PMID 20066050, PMCID PMC2798966, DOI 10.1371/journal.pone.0008422, résumé).
  22. (en) « Circumcision associated with significant changes in bacteria », sur EurekAlert! (consulté le ).
  23. (en) Supriya D. Mehta1, Stefan J. Green, Ian Maclean, Hong Hu, Robert C. Bailey, Patrick M. Gillevet et Greg T. Spear, « Microbial diversity of genital ulcer disease in men enrolled in a randomized trial of male circumcision in Kisumu, Kenya », PLOS One, vol. 7, no 7,‎ , e38991.
  24. (en) Reet Mändar, « Microbial Ecology of The Male Genital Tract », Microbial Ecology in Health & Disease, vol. 24, no supplément,‎ , p. 11 (résumé).
  25. (en) Ísis Serrano Silva, Eder da Costa dos Santos, Cristiano Ragagnin de Menezes, Andréia Fonseca de Faria, Elisangela Franciscon, Matthew Grossman et Lucia Regina Durrant, « Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia », Bioresource Technology, vol. 100, no 20,‎ , p. 4669–4675 (ISSN 0960-8524, DOI 10.1016/j.biortech.2009.03.079, résumé).
  26. (en) Gabriel Castrillo, Paulo José Pereira Lima Teixeira, Sur Herrera Paredes et Theresa F. Law, « Root microbiota drive direct integration of phosphate stress and immunity », Nature, vol. 543, no 7646,‎ , p. 513–518 (ISSN 1476-4687, PMID 28297714, PMCID 5364063, DOI 10.1038/nature21417, résumé).
  27. (en) Oliver Dilly, « Regulation of the respiratory quotient of soil microbiota by availability of nutrients », FEMS Microbiology Ecology, vol. 43, no 3,‎ , p. 375–381 (ISSN 0168-6496, DOI 10.1111/j.1574-6941.2003.tb01078.x, lire en ligne, consulté le ).
  28. (en) R. M. Miller et R. Cameron, Some effects of topsoil storage during surface mining on the soil microbiota., s.n, (lire en ligne), p. 131-135, 4th Symp. Surface Mining and Reclamation, National Coal Association, Washington, DC.
  29. (en) G. Stotzky et R. D. Goos, « Effect of high CO2 and low O2 tensions on the soil microbiota », Canadian Journal of Microbiology, vol. 11, no 5,‎ , p. 853–868 (ISSN 0008-4166, PMID 5883895, DOI 10.1139/m65-115, résumé).
  30. (en) Pascal A. Niklaus, « Effects of elevated atmospheric CO2 on soil microbiota in calcareous grassland », Global Change Biology, vol. 4, no 4,‎ , p. 451–458 (ISSN 1365-2486, DOI 10.1046/j.1365-2486.1998.00166.x, résumé).
  31. (en) Pascal A. Niklaus et Christian Körner, « Responses of soil microbiota of a late successional alpine grassland to long term CO2 enrichment », Plant and Soil, vol. 184, no 2,‎ , p. 219–229 (ISSN 1573-5036, DOI 10.1007/BF00010451, résumé).
  32. (en) H. Insam, E. Bååth, M. Berreck et Å. Frostegård, « Responses of the soil microbiota to elevated CO2 in an artificial tropical ecosystem », Journal of Microbiological Methods, vol. 36, no 1,‎ , p. 45–54 (ISSN 0167-7012, DOI 10.1016/S0167-7012(99)00010-X, résumé).
  33. (en) Matthieu Chauvat, Andrei S. Zaitsev et Volkmar Wolters, « Successional changes of Collembola and soil microbiota during forest rotation », Oecologia, vol. 137, no 2,‎ , p. 269–276 (ISSN 1432-1939, DOI 10.1007/s00442-003-1310-8, lire en ligne, consulté le ).
  34. (en) Marja R.T. Palmroth, Uwe Münster, John Pichtel et Jaakko A. Puhakka, « Metabolic responses of microbiota to diesel fuel addition in vegetated soil », Biodegradation, vol. 16, no 1,‎ , p. 91–101 (ISSN 1572-9729, DOI 10.1007/s10531-004-0626-y, lire en ligne, consulté le ).
  35. (en) Patrick K. Jjemba, « The effect of chloroquine, quinacrine, and metronidazole on both soybean plants and soil microbiota », Chemosphere, vol. 46, no 7,‎ , p. 1019–1025 (ISSN 0045-6535, DOI 10.1016/S0045-6535(01)00139-4, résumé).
  36. « In contrast to some reports of limited, short-term inquiries these results showed considerable effects of glyphosate on soil microorganisms » in (en) E. B. Roslycky, « Glyphosate and the response of the soil microbiota », Soil Biology and Biochemistry, vol. 14, no 2,‎ , p. 87–92 (ISSN 0038-0717, DOI 10.1016/0038-0717(82)90049-9, résumé).
  37. (en) Peter S. Kourtev, Joan G. Ehrenfeld et Max Häggblom, « Exotic Plant Species Alter the Microbial Community Structure and Function in the Soil », Ecology, vol. 83, no 11,‎ , p. 3152–3166 (ISSN 0012-9658, DOI 10.2307/3071850, résumé).
  38. (en) Joan G. Ehrenfeld, Peter Kourtev et Weize Huang, « Changes in Soil Functions Following Invasions of Exotic Understory Plants in Deciduous Forests », Ecological Applications, vol. 11, no 5,‎ , p. 1287–1300 (ISSN 1051-0761, DOI 10.2307/3060920, résumé).
  39. « http://presse.inra.fr/Communiques-de-presse/microbiote-fromages-traditionnels »(Archive.org • Wikiwix • Archive.is • Google • Que faire ?).
  40. Predrag Slijepcevic, « Les microbes parcourent le monde via des autoroutes aériennes », sur The Conversation, (consulté le ).

Voir aussi

Articles connexes

Liens externes

Liens externes

Liens video

Liens audio

Bibliographie

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.