Accueil🇫🇷Chercher

Combustible nucléaire

Le combustible nucléaire est le produit qui, contenant des isotopes fissiles (uranium, plutonium…), fournit l'énergie dans le cœur d'un réacteur nucléaire en entretenant la réaction en chaîne de fission nucléaire.

Assemblage combustible.
Modèle de l'atome.

Les termes « combustible » et « combustion » sont utilisés par analogie à la chaleur dégagée par une matière en feu, mais sont inappropriés pour caractériser tant le produit que son action. En effet, la combustion est une réaction d'oxydoréduction (échange d'électrons) tandis que la « combustion » des matières radioactives provient de réactions nucléaires (fission de noyaux atomiques).

Les matières fissiles sont utilisĂ©es pour la propulsion nuclĂ©aire de navires militaires (en particulier de porte-avions et de sous-marins nuclĂ©aires), ainsi que comme combustible dans les centrales nuclĂ©aires. Un rĂ©acteur Ă  eau pressurisĂ©e de 1 300 MWe comporte environ 100 tonnes de combustible renouvelĂ© pĂ©riodiquement, par parties.

Le combustible UOX (Uranium Oxide) est constitué de pastilles de dioxyde d'uranium (UO2). Ces pastilles sont empilées dans des tubes en alliage de zirconium d'environ quatre mètres de longueur, aussi appelés « gaines ». L'ensemble pastilles-gaine constitue un crayon. Les crayons sont bouchés aux deux extrémités et sont pressurisés avec de l'hélium. Les crayons sont ensuite réunis en assemblages combustible constitués d'environ 250 éléments.

Fabrication du combustible nucléaire

Procédé

Pastilles combustibles.

L'étape de fabrication du combustible est destinée à donner aux matières nucléaires la forme physico-chimique adéquate pour une irradiation en réacteur. Les centrales électrogènes utilisent pour la plupart un combustible d'oxyde d'uranium UOX (uranium oxide). Certaines applications spécifiques requièrent un combustible métallique (réacteurs Magnox par exemple).

L'UF6 enrichi est converti en poudre d'oxyde d'uranium dans un premier temps. L'oxyde d'uranium est ensuite comprimé sous forme de pastilles (de 7 à mm de diamètre pour les réacteurs à eau pressurisée, REP). Ces pastilles sont elles-mêmes empilées dans un tube : la gaine. Selon le type de réacteur, le gainage est réalisé :

  • en alliage de zirconium, le Zircaloy, qui n'absorbe pas les neutrons thermiques et permet donc de ne pas rĂ©duire le bilan neutronique du rĂ©acteur en Ă©vitant les captures stĂ©riles.
  • en acier inoxydable pour les rĂ©acteurs Ă  neutrons rapides Ă  caloporteur sodium (l'acier n'est pas absorbant pour les neutrons rapides) ou pour certains concepts de rĂ©acteurs Ă  neutrons thermiques (AGR par exemple). Dans ce dernier cas, ceci demande un surcroĂ®t d'enrichissement pour compenser les captures stĂ©riles,
  • en aluminium, principalement pour des assemblages expĂ©rimentaux.

La gaine est close à ses extrémités par des bouchons pseudo-coniques soudés. Un ressort est situé entre le haut de la colonne fissile et le bouchon supérieur de sorte à assurer le maintien des pastilles. Le crayon ainsi constitué est rempli sous hélium. Ce gaz n'est pas activable et prévient ainsi la formation d'éléments radioactifs gazeux dans l'interstice (ou gap) pastille - gaine.

Les crayons sont ensuite assemblés en réseaux verticaux d'environ 250 crayons parallèles (selon le type de réacteur). Des grilles horizontales assurent le maintien en faisceaux tandis qu'un dispositif de préhension situé en haut de l'assemblage facilite sa manutention et permet l'accrochage dans le cœur. Les grilles sont munies d'ailettes, ce qui assure un mélange turbulent du fluide caloporteur — l'eau du circuit primaire — circulant entre les crayons. En France, les assemblages les plus couramment utilisés comportent 264 éléments, soit 17 × 17 rangées, moins 24 tubes guides et 1 tube d'instrumentation.

Le combustible MOX (mixed-oxide) est fabriqué à partir du plutonium de retraitement et de l'uranium appauvri produit lors de l'étape d'enrichissement. La forme physico-chimique du combustible est identique à celle de l'oxyde d'uranium (UOX).

Installations industrielles

De nombreux pays disposent d'usines de fabrication de combustible. Les capacitĂ©s mondiales de fabrication sont de l'ordre de 12 000 tML/an (tML : tonnes de mĂ©tal lourd) pour le combustible UOX des rĂ©acteurs Ă  eau lĂ©gère et 5 000 tML/an pour le combustible des rĂ©acteurs Ă  eau lourde (majoritairement au Canada). Les autres usines de fabrication concernent le combustible AGR (au Royaume-Uni) ainsi que les combustibles MOX pour REP et RNR.

Cycle du combustible nucléaire

Schéma simplifié de la filière nucléaire.

Le cycle du combustible nucléaire comporte les étapes suivantes :

  • amont du cycle (extraction minière de l'uranium naturel, conversion, enrichissement, fabrication du combustible) ;
  • irradiation en rĂ©acteur ;
  • aval du cycle (entreposage intermĂ©diaire du combustible irradiĂ©, traitement du combustible irradiĂ©, entreposage des dĂ©chets radioactifs et des combustibles irradiĂ©s, stockage) ;
  • transport du combustible nuclĂ©aire et des matières radioactives.

Combustible nucléaire irradié

RĂ©acteur CROCUS de l'EPFL.

Principaux éléments contenus dans les combustibles nucléaires irradiés[1](en kilogrammes par tonne de combustible REP 1300, après trois ans de refroidissement).

Uranium : 935,548 kg d'enrichissement d'environ 1 %.

Actinides Masse (kg)
neptunium 0,43
plutonium 10
américium 0,38
curium 0,042
Produits de fission Masse (kg) Produits de fission Masse (kg)
Kr, Xe 6,0 Tc 0,23
Cs, Rb 3,1 Ru, Rh, Pd 0,86
Sr, Ba 2,5 Ag, Cd, In, Sn, Sb 0,25
Y, La 1,7 Ce 2,5
Zr 3,7 Pr 1,2
Se, Te 0,56 Nd 4,2
Mo 3,5 Sm 0,82
I 0,23 Eu 0,15

Aval du cycle

Dans certaines filières de réacteurs, parmi lesquelles les réacteurs à eau pressurisée et les réacteurs à eau bouillante (les plus répandues), les combustibles usés peuvent être retraités, ce qui permet de séparer les constituants valorisables pour une nouvelle utilisation de ceux qui ne peuvent être recyclés et constituent des déchets nucléaires ultimes, tout en conditionnant ceux-ci sous une forme physico-chimique plus stable et plus apte à l'entreposage ou au stockage (en surface ou en profondeur).

Dans les rĂ©acteurs Ă  eau pressurisĂ©e actuels (de type Westinghouse), le temps de sĂ©jour moyen des barres de combustible est de 4,5 ans. Au terme de cette pĂ©riode, il reste pour une tonne de combustible :

Si le plutonium peut ĂŞtre rĂ©utilisĂ©, les autres actinides mineurs sont vitrifiĂ©s et stockĂ©s. Il faut entre 300 000 ans et un million d'annĂ©es pour que leur radiotoxicitĂ© chute et rejoigne celle de l'uranium. La transmutation se donne pour objectif de les muter en espèces nettement moins radiotoxiques. Par exemple, le projet MYRRHA permettrait la combustion de barre composĂ©es jusqu'Ă  50 % de ces actinides. Après transmutation, leur radiotoxicitĂ© rejoindrait celle de l'uranium en seulement 300 ans[2].

Les gaines de zirconium entourant le combustible et les structures internes de l'assemblage combustible ne sont pas recyclées et font partie des déchets à vie longue[3].

Notes et références

  1. CEA / Direction des Programmes, Informations sur l'Ă©nergie : Ă©dition 2004, Direction de la communication du CEA, Paris, 2005.
  2. Hamid Aït Abderrahim, Transmuter les déchets nucléaires avec Myrrha, Pour la Science, no 493, p. 7.
  3. Philippe Bihouix et Benoît de Guillebon, Quel futur pour les métaux ? Raréfaction des métaux, un nouveau défi pour la société, EDP Sciences, p. 205

Voir aussi

Articles connexes

Liens externes

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.