Halobacterium salinarum
Halobacterium salinarum est une espèce d'archées halophiles aérobies qu'on trouve dans les environnements à forte teneur en sels tels que le poisson salé et divers aliments riches en sel, les marais salants ou encore les lacs salés : lorsque la salinité devient suffisante, ces milieux prennent une teinte rougeâtre due à la concentration en archées halophiles.
Règne | Archaea |
---|---|
Embranchement | Euryarchaeota |
Classe | Halobacteria |
Ordre | Halobacteriales |
Famille | Halobacteriaceae |
Genre | Halobacterium |
corrig. (Harrison and Kennedy 1922) Elazari-Volcani 1957 emend. Gruber et al. 2004[1]
Structure
Ce sont des organismes unicellulaires en forme de bâtonnets (ou bacille). Elles réagissent négativement à la coloration de Gram dans la mesure où elles sont dépourvues de paroi cellulaire. Leur membrane plasmique est constituée d'une unique bicouche lipidique entourée par une couche S[2]. Cette couche S est constituée d'une glycoprotéine qui compte pour environ 50 % des protéines de la surface cellulaire[3]. Ces protéines forment un réseau dans la membrane. Les chaînes de glycanes sont riches en résidus sulfate donnant à l'ensemble une charge électrique négative qui pourrait stabiliser le réseau dans les conditions à très forte salinité[4].
H. salinarum tire son énergie essentiellement de la dégradation des acides aminés, notamment l'arginine et l'aspartate[2].
Adaptation aux conditions extrĂŞmes
Salinité élevée
Pour survivre dans les environnements très salés, cette archée a recours à des osmoprotecteurs — notamment le chlorure de potassium KCl — afin de réduire le stress osmotique[5]. La concentration en potassium est plus élevée dans la cellule qu'à l'extérieur de celle-ci et résulte d'un transport actif pour compenser la pression osmotique environnante. Au-delà d'un certain niveau de salinité à l'intérieur de la cellule, les protéines peuvent précipiter ; pour éviter cet effet de relargage, les protéines de H. salinarum sont essentiellement acides : le point isoélectrique moyen de ces protéines et de 4,9, ce qui leur permet de demeurer en solution jusqu'à des concentrations élevées en sel.
Anoxie et photosynthèse
La concentration en H. salinarum peut être telle dans les environnements salés que l'oxygène dissous est rapidement épuisé, conduisant à l'anoxie du milieu. H. salinarum étant strictement aérobie, il lui faut pouvoir produire de l'énergie en l'absence d'oxygène. Elle y parvient grâce à la bactériorhodopsine[6], qui permet à une ATP synthase d'utiliser l'énergie des photons pour produire de l'ATP par l'intermédiaire du couplage chiosmotique avec un gradient de concentration en protons (ions hydronium) généré par transport actif sous l'effet de la lumière[7].
H. salinarum produit également des vésicules de gaz qui lui permet de flotter à la surface de l'eau, où l'oxygène est plus abondant et où l'intensité lumineuse est plus élevée. Ces vésicules sont des structures complexes, constituées de protéines codées par au moins 14 gènes.
Protection contre les rayons ultraviolets
H. salinarum est par essence exposée à de fortes doses d'ultraviolets qui nécessitent un mécanisme efficace de réparation des dommages causés par ces rayons à leur matériel génétique. Les gènes codant les enzymes de réparation de l'ADN sont semblables à ceux des bactéries et des eucaryotes. De plus, cette archée produit de la bactériorubérine, un terpénoïde à 50 atomes de carbone responsable, avec la bactériorhodopsine, de la couleur pourpre caractéristique de ces archées, qui agit comme un antioxydant afin de protéger l'ADN des dommages causés par les dérivés réactifs de l'oxygène[8].
Notes et références
- (en) Référence NCBI : Halobacterium salinarum (taxons inclus)
- (en) Wailap Victor Ng, Sean P. Kennedy, Gregory G. Mahairas, Brian Berquist, Min Pan, Hem Dutt Shukla, Stephen R. Lasky, Nitin S. Baliga, Vesteinn Thorsson, Jennifer Sbrogna, Steven Swartzell, Douglas Weir, John Hall, Timothy A. Dahl, Russell Welti, Young Ah Goo, Brent Leithauser, Kim Keller, Randy Cruz, Michael J. Danson, David W. Hough, Deborah G. Maddocks, Peter E. Jablonski, Mark P. Krebs, Christine M. Angevine, Heather Dale, Thomas A. Isenbarger, Ronald F. Peck, Mechthild Pohlschroder, John L. Spudich, Kwang-Hwan Jung, Maqsudul Alam, Tracey Freitas, Shaobin Hou, Charles J. Daniels, Patrick P. Dennis, Arina D. Omer, Holger Ebhardt, Todd M. Lowe, Ping Liang, Monica Riley, Leroy Hood et Shiladitya DasSarma, « Genome sequence of Halobacterium species NRC-1 », Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no 22,‎ , p. 12176-12181 (lire en ligne) DOI 10.1073/pnas.190337797
- (en) M. F. Mescher, J. L. Strominger, « Purification and characterization of a prokaryotic glucoprotein from the cell envelope of Halobacterium salinarium », Journal of Biological Chemistry, vol. 251, no 7,‎ , p. 2005-2014 (lire en ligne)
- (en) Margit Sára et Uwe B. Sleytr, « S-Layer Proteins », Journal of Bacteriology, vol. 182, no 4,‎ , p. 859-868 (lire en ligne) DOI 10.1128/JB.182.4.859-868.2000
- (en) M. PĂ©rez-Fillol, F. RodrĂguez-Valera, « Potassium ion accumulation in cells of different halobacteria », Microbiologia, vol. 2, no 2,‎ , p. 73-80 (lire en ligne)
- (en) D. Oesterhelt, W. Stoeckenius, « Functions of a new photoreceptor membrane », Proceedings of the National Academy of Sciences of the United States of America, vol. 70, no 10,‎ , p. 2853-2857 (lire en ligne)
- (en) Magnus Andersson, Erik Malmerberg, Sebastian Westenhoff, Gergely Katona, Marco Cammarata, Annemarie B. Wöhri, Linda C. Johansson, Friederike Ewald, Mattias Eklund, Michael Wulff, Jan Davidsson et Richard Neutze, « Structural Dynamics of Light-Driven Proton Pumps », Structure, vol. 17, no 9,‎ , p. 1265-1275 (lire en ligne) DOI 10.1016/j.str.2009.07.007
- (en) Takeshi Saito, Yuko Miyabe, Hiroshi Ide et Osamu Yamamoto, « Hydroxyl radical scavenging ability of bacterioruberin », Radiation Physics and Chemistry, vol. 50, no 3,‎ , p. 267-269 (lire en ligne) DOI 10.1016/S0969-806X(97)00036-4