Base (chimie)
Une base est un produit chimique qui, à l'inverse d'un acide, est capable de capturer un ou plusieurs protons ou, réciproquement, de fournir des électrons. Un milieu riche en bases est dit basique ou alcalin. Il existe différents modèles chimiques pour expliquer le comportement des bases. La réaction chimique d'un acide et d'une base donne un sel et de l'eau.
C'est un produit caustique, qui peut provoquer des brûlures. Les bases les plus connues sont la chaux vive, l'ammoniaque et la soude.
Théories successives
Premières théories: Rouelle, Arrhenius
Le terme base a été introduit dans la chimie par le chimiste français Guillaume-François Rouelle en 1754. Il a remarqué que les acides connus à l'époque, qui étaient surtout des liquides volatils (tel que l'acide acétique), se transforment en sels solides cristallisés lorsqu'ils sont combinés avec certaines substances particulières[n 1]. Rouelle a considéré qu'une telle substance sert comme base du sel, en lui donnant une « forme concrète ou solide »[1]. Auparavant, Robert Boyle (1627-1691) avait su différencier un acide d'une base en mettant à profit le changement de couleur du sirop de violette (passage du rouge au vert). Avant lui, seul le goût piquant des acides permettait de les reconnaître[2].
Les premières définitions modernes d'un acide et d'une base furent proposées par Svante August Arrhenius en 1884. Selon Arrhenius, un acide est un composé à hydrogène mobile qui relâche dans l'eau des ions hydrogènes ou hydrons H+, alors qu'une base est un composé qui relâche des ions hydroxyde OH− dans l'eau. Cependant, plusieurs limites de ce modèle ont émergé assez rapidement. La principale limite est la restriction de la définition de la base et de l'acide au milieu aqueux. On a très vite observé des phénomènes acido-basiques dans des solvants non polaires, ce qui n'est pas décrit par ce modèle. On peut également observer une autoprotolyse d'autres solvants polaires :
- autoprotolyse de l'ammoniac : 2 NH3 = NH4+ +NH2−
- autolyse de anhydride acétique : (CH3CO)2O = CH3CO+ + CH3COO−
Selon la théorie du système solvant, une base est une substance qui augmente la concentration des anions du solvant et un acide une substance qui augmente la concentration des cations du solvant. On peut remarquer ici que ce modèle ne fait pas intervenir la dualité constatée entre les bases et les acides qui sont une caractéristique intrinsèque au composé étudié. De plus, cette théorie ne se préoccupe pas du comportement des acides dans les solvants non polaires.
Ces deux derniers modèles, bien que partiellement valides, ont été remis en cause puis généralisés en 1923, tout d'abord par les chimistes Joannes Brønsted et Thomas Lowry, puis dans la même année par Gilbert Lewis qui en a donné la définition la plus universelle. Les ions H+ sont maintenant nommés des protons, suite à la découverte par Ernest Rutherford en 1919 qu'ils sont des composantes des atomes autres que l'hydrogène.
Théorie de Brønsted et Lowry
La théorie de Brønsted-Lowry définit une base comme un ""accepteur de proton"", c'est-à -dire ou une espèce capable de capter un ion H+. De même un acide est défini comme un ""donneur de proton"" ou substance capable de céder un ion H+.
D'après cette définition et l'ion OH- et la molécule d'ammoniac (NH3) sont classées comme bases: OH- + H+ → H2O et aussi NH3 + H+ → NH4+. Cette définition a mis fin à la plus grande partie des objections que l'on a fait aux deux théories précédemment développées. En effet, cette théorie est valide dans le cas des solvants non aqueux tel que l'ammoniac liquide, ce qui a eu une grande importance pour l'analyse chimique. Dans l'ammoniac liquide, la base la plus forte est l'ion amidure NH2-.
Théorie de Lewis
La théorie des acides et bases formulée par Gilbert Lewis est encore plus générale. Gilbert Lewis a proposé qu'une liaison chimique est formée par le partage des électrons. Lewis définit une base comme un donneur de doublet d'électrons et un acide comme accepteur de doublet d'électrons. En effet, la base partage une paire d'électrons avec l'acide pour formé un composés de coordination appelé adduit de Lewis ou complexe de coordination.
La théorie de Brønsted-Lowry est en fait un cas particulier de la théorie de Lewis avec le proton comme accepteur de doublet d'électrons. Mais d'autres acides de Lewis sont connus aussi; par exemple le trifluorure de bore possède une couche électronique (octet) incomplet sur l'atome de bore qui peut accepter une autre paire d'électrons. De même nombreux ions des métaux de transition sont des acides de Lewis.
Toutefois dans l'industrie, le modèle de Brønsted-Lowry est largement utilisé, on continue de raisonner en termes d'échange de protons. Dans le milieu scolaire, on définit d'ailleurs toujours au moins dans un premier temps un acide et une base selon le modèle de Brønsted.
Dans l'eau
En milieu aqueux, on utilise habituellement la définition de Brønsted-Lowry. Une base peut être représentée par la formule générique B.
Lorsque la base B est mise en présence d'eau, la réaction suivante a lieu :
- B + H2O ↔ BH+ + OH− (1)
La constante de cette réaction est appelée constante de basicité et on la note Kb. On établit une distinction entre les bases faibles et les bases fortes. Une base forte est totalement dissociée dans l'eau, alors qu'une base faible n'est que partiellement dissociée dans l'eau.
BH+ est capable de céder un proton. On a en fait un couple base faible/acide faible conjugué B/BH+. En conséquence, la constante d'acidité Ka est uniquement définie dans le cas des bases faibles et vaut alors :
- Ka = [B][H3O+]/[BH+] (4)
Ka est en fait la constante d'équilibre de la réaction de dissociation (3).
Parmi les plus fortes bases, on retrouve la soude NaOH, et la chaux (chaux vive CaO ou chaux éteinte Ca(OH)2).
Dans l'eau, la basicité est mesurée à l'aide de l'échelle des pH, comme l'acidité (les deux notions étant complémentaires). L'eau elle-même est un acide faible et une base faible en même temps.
En géologie, en chimie verrière ou chimie des sels fondus
En pétrologie et en chimie des sels fondus, on utilise de préférence la définition de Lux-Flood : une base est une espèce pouvant céder un ion oxyde O2− [3]. Par exemple, l'oxyde de calcium CaO est une base, car dans la réaction :
- CaO + H2O → Ca(OH)2
le CaO cède son ion oxyde
- CaO → Ca2+ + O2−
qui lui est capturé par l'eau O2− + H2O → 2OH−.
Na2O | 1,15 |
CaO | 1,0 |
MgO | 0,78 |
CaF2 | 0,67 |
TiO2 | 0,61 |
Al2O3 | 0,61 |
MnO | 0,59 |
Cr2O3 | 0,55 |
FeO | 0,51 |
Fe2O3 | 0,48 |
SiO2 | 0,48 |
Géologues et géochimistes, voire physico-chimistes de la matière condensée, décrivent plus communément l'évolution des formations et (micro)structures minérales en termes de potentiel oxygène[5].
D'une manière synthétique, on dit qu'une roche est basique si, par sa teneur globale ou composition brute, elle est pauvre en dioxyde de silicium, ou silice, SiO2. La silice est un oxyde acide susceptible d'engendrer l'ion silicate tétraédrique SiO44−. Les basaltes, ne contenant qu'environ 30 % de silice, et d'une manière générale les roches basaltiques, sont basiques.
Cela a une grande importance dans le comportement des magmas (notamment dans les volcans), et aussi lorsqu'il faut dissoudre la roche pour l'analyser (dissolution dans de l'acide pour l'ICP, ou bien dans un verre pour l'analyse en spectrométrie de fluorescence X).
Les roches calcaires, c'est-à -dire la gamme très variée de roches à base de différents minéraux du type carbonates de calcium et/ou de magnésium, sont basiques parce qu'elles réagissent aux acides d'un point de vue trivial. Par exemple, la craie arrosée d'acide acétique ou de vinaigre fort fait effervescence. Sa structure ionique se décompose, en libérant les ions calcium Ca2+ et surtout le gaz carbonique CO2, ce dernier à l'origine du bullage plus ou moins intense, cause de l'effervescence.
Propriétés
Les bases ont tendance à donner des électrons, ce qui est caractérisé par leur potentiel d'oxydoréduction. L'équilibre avec la forme acide est caractérisé au moyen d'une constante (Kb ou pKb), pH auquel la molécule est neutre. Un composé basique peut avoir plusieurs pKb, correspondants à chacun de ses groupes ionisables.
L'alcalinité (parfois aussi appelé basicité) d'une solution correspond à la concentration en composés basiques, exprimée en potentiel d'oxydoréduction (voir Potentiel hydrogène). C'est l'inverse de l'acidité.
Les bases produisent des réactions d'oxydoréduction, des réactions de substitution nucléophile…
Notes et références
Notes
- « j'ai étendu le nombre de ces sels autant qu'il était possible, en définissant génériquement le sel neutre un sel formé par l'union d'un acide avec une substance quelconque, qui lui sert de base & lui donne une forme concrète ou solide ». (Mémoire sur les sels neutres de 1754, p. 573-574)
Références
- (en) William B. Jensen, « The Origin of the Term Base », Journal of Chemical Éducation • 1130 Vol. 83 No. 8 août 2006.
- Bernard Vidal, Histoire de la chimie, Paris, Presses universitaires de France, coll. « Que sais-je ? » (no 35), , 126 p. (ISBN 978-2-13-048353-3, BNF 36705795)
- Une base de Flood est un donneur d'oxyde O2−. Lire p. 319-320 du chap. 9, « La chimie des bases et des acides », in Chimie inorganique, p. 318-358.
- (en) Eugene Pretorius, Fundamentals of EAF and laddle slags and laddle refining principles, (DOI 10.1179/030192302225003495, lire en ligne), p. 8
- Et non pas de potentiel hydrogène selon la théorie de Lowry-Brønsted.
Sources
- Encyclopedia of Industrial Chemical analysis, Smell-Hilton, 1966
- Valence and structure of Atoms and Molecules, Chemical Catalog, G.N Lewis, 1938
- James Huheey, Ellen A Keiter, Richard L Keiter, André Pousse (trad. de l'anglais par) et Jean Fischer (trad. de l'anglais par), Chimie inorganique, Paris Bruxelles, De Boeck, , 964 p. (ISBN 978-2-8041-2112-9, BNF 37670940). En particulier, chap. 9, « La chimie des bases et des acides », p. 318-358.
Voir aussi
Articles connexes
Liens externes
- Ressource relative à la santé :
- (cs + sk) WikiSkripta
- Notices dans des dictionnaires ou encyclopédies généralistes :