Accueil🇫🇷Chercher

Trou noir supermassif

Un trou noir supermassif (TNSM)[Note 1] est un trou noir dont la masse est de l'ordre d'un million de masses solaires ou plus. Il constitue l’un des quatre types de trous noirs avec les trous noirs primordiaux, les trous noirs stellaires, les trous noirs intermĂ©diaires. Étant les plus massifs, leur masse peut atteindre jusqu'Ă  40 milliards de masses solaires (celui de la galaxie Holmberg 15A). Les trous noirs supermassifs se trouvent au centre des galaxies massives et il est gĂ©nĂ©ralement acceptĂ© dans la communautĂ© scientifique que chaque grosse galaxie abrite de tels objets. Le trou noir supermassif au centre de notre galaxie, la Voie lactĂ©e, correspond Ă  la source Sagittarius A*.

Images du trou noir supermassif M87* et de son disque d'accrétion par l’Event Horizon Telescope.
En haut : vue d'artiste d’un trou noir supermassif absorbant la matière environnante. En bas : images supposées d'un trou noir dévorant une étoile dans la galaxie RXJ 1242-11. Photo en rayons X avec le télescope Chandra à gauche ; photo optique prise par le VLT de l'ESO à droite.

Trous noirs supermassifs au centre des galaxies

Aujourd’hui, de nombreuses observations montrent qu’à peu près toutes les grandes galaxies possèdent un trou noir supermassif en leur centre[1]. C’est, par exemple, le cas de notre propre galaxie, la Voie lactĂ©e. Les observations les plus significatives de la prĂ©sence d’un tel trou noir dans notre galaxie sont celles du mouvement orbital des Ă©toiles les plus proches du centre galactique, dans la rĂ©gion appelĂ©e Sagittarius A*. Le suivi des trajectoires a permis de mesurer directement la masse du trou noir central : 4,2 Â± 0,2 millions de masses solaires[2] - [3]. En 2002, des astronomes suivent l’étoile S2 dans Sagittarius A* et montrent qu’elle s’approche jusqu’à 17 heures-lumière du trou noir central[4] - [5] - [6].

Observations

En , l'instrument d'interfĂ©romĂ©trie GRAVITY, installĂ© au Très Grand TĂ©lescope et dĂ©veloppĂ© par l'Institut de planĂ©tologie et d'astrophysique de Grenoble, le Laboratoire d'Ă©tudes spatiales et d'instrumentation en astrophysique de Paris et le centre français en aĂ©rospatial, observe avec une prĂ©cision inĂ©galĂ©e, dans la banlieue de Sagittaire A*, le trou noir supermassif distant de 25 000 annĂ©es-lumière qui occupe le centre de la Voie lactĂ©e. Ces observations reprĂ©sentent une rĂ©ussite technique de la communautĂ© scientifique d'autant plus mĂ©morable que l'Ă©toile S2, ayant une orbite elliptique autour de ce trou noir supermassif, est passĂ©e en 2018 au plus près de ce dernier[7].

Le , l’Event Horizon Telescope publie les premières images d'un trou noir, M87*, trou noir supermassif situé au centre de M87[8] - [9].

Entre mars et juillet 2021, en utilisant encore ce très grand tĂ©lescope, Reinhard Genzel et son Ă©quipe observèrent des Ă©toiles proches de Sagittaire A*. Ils constatèrent que l'Ă©toile S29 s'accĂ©lĂ©rait jusqu'Ă  une vitesse de 8 740 km/seconde (plus vite que celle de S2) et dĂ©couvrirent ainsi une nouvelle Ă©toile S300. Ils en conclurent qu'au centre de la Voie lactĂ©e, 99,9 % de la masse appartient au trou noir supermassif de Sagittaire A*[10] - [11].

L'image du trou noir central de la Voie lactée Sagittarius A* est présentée en mai 2022 à l'issue d'un long travail de traitement de données[12].

Propriétés

Par comparaison avec un trou noir stellaire, la densitĂ© moyenne d’un trou noir supermassif peut en fait ĂŞtre très faible (parfois plus faible que celle de l’eau). Cela s’explique par le fait que le rayon de Schwarzschild du trou noir croĂ®t proportionnellement Ă  la masse, ce qui induit que la densitĂ© moyenne Ă  l'intĂ©rieur de son rayon de Schwarzschild dĂ©croĂ®t selon le carrĂ© de sa masse. Plus le trou noir est grand, moins sa densitĂ© moyenne est grande, mĂŞme si sa masse croĂ®t sans limite. Ainsi, la masse volumique d'un trou noir de 1,357 4 Ă— 108 masses solaires est comparable Ă  celle de l'eau[13]. Pour se reprĂ©senter un tel trou noir, on peut imaginer une boule d'eau de 400 millions de kilomètres de rayon, s'Ă©tendant donc du Soleil jusqu'Ă  la ceinture d'astĂ©roĂŻdes. Une telle boule, si elle existait, s'effondrerait sous l'effet de sa propre gravitĂ© pour former un trou noir d'un rayon de Schwarzschild Ă©gal Ă  son rayon initial. Un trou noir de 4,292 5 Ă— 109 masses solaires aurait la masse volumique de l'air et un rayon de 12,7 milliards de kilomètres. Le trou noir M87* a une masse de l'ordre de 6,5 Ă— 109 masses solaires et un rayon de 19 milliards de kilomètres ; son diamètre est donc de 38 milliards de kilomètres, ou 35 heures-lumière ; comme il est situĂ© Ă  53,5 millions d'annĂ©es-lumière de la Terre, son diamètre apparent serait de 15,5 ÎĽas (microsecondes d'arc). Son ombre, enregistrĂ©e par la collaboration Event Horizon Telescope, a un diamètre de l'ordre de 25 ÎĽas.

Autre fait notable, les forces de marées sont négligeables au voisinage de l’horizon des évènements d’un trou noir supermassif, car la singularité gravitationnelle centrale en est très éloignée. Ce qui fait qu’un explorateur s’approchant d’un trou noir supermassif ne ressentirait rien de particulier lors du franchissement de son horizon.

Formation

La formation des trous noirs supermassifs est encore fortement débattue, mais elle se fait certainement sur de bien plus grandes échelles de temps que le délai de formation d’un trou noir stellaire. Ces derniers apparaissent après l’explosion d’une supernova produite par une étoile massive, comme une étoile Wolf-Rayet, ou d'une hypernova.

L’hypothèse la plus simple de la formation des trous noirs supermassifs est de commencer par un trou noir stellaire, accrétant ensuite de la matière pendant des milliards d’années. Cette hypothèse a cependant de nombreux défauts, parmi lesquels la nécessité d’une très grande densité d’étoiles dans son voisinage proche pour nourrir continuellement le trou noir.

Surtout des observations nouvelles ont montré l’existence de trous noirs supermassifs aux très grands décalages vers le rouge, c’est-à-dire au début de l’évolution de l’Univers. Ces trous noirs n’auraient ainsi pas eu le temps de se former par simple accrétion d’étoiles, même si elles auraient alors été très massives. Il reste donc à en déterminer le processus, mais il semble possible que la formation de tels trous noirs ait été très rapide, dès les débuts de l’Univers[14] - [15]. Une hypothèse en ce sens est qu'il est possible que ces trous noirs supermassifs se soient formé au sein de quasi-étoiles au début de l'univers[16].

Exemples

Visualisation du disque d'accrétion de Sagittarius A* réalisée par l'Event Horizon Telescope.
Image du trou noir et du jet de M87, obtenue en 2023 par une collaboration internationale[17].

SituĂ© Ă  26 000 annĂ©es-lumière de la Terre, le trou noir du centre de la Voie lactĂ©e a une masse de 4,2 millions de fois celle du Soleil[18] et son diamètre est d'une vingtaine de millions de kilomètres.

Au cœur des galaxies de l'Univers, les trous noirs dits supermassifs sont compris dans la fourchette d'un million à 40 milliards de fois la masse du Soleil. Ils se trouvent par exemple dans :

Le satellite Chandra a permis d’observer, au centre de la galaxie NGC 6240, deux trous noirs supermassifs en orbite l’un autour de l’autre[22].

Bibliographie

Notes et références

Notes

  1. En anglais supermassive black hole (SMBH).

Références

  1. (en) David Merritt, Dynamics and Evolution of Galactic Nuclei, Princeton, NJ, USA, Princeton University Press, , 546 p. (ISBN 0691158606, présentation en ligne).
  2. (en) Andrea M. Ghez, B. L. Klein, M. Morris et E. E. Becklin, « High Proper-Motion Stars in the Vicinity of Sagittarius A*: Evidence for a Supermassive Black Hole at the Center of Our Galaxy », The Astrophysical Journal, vol. 509, no 2,‎ , p. 678-686 (DOI 10.1086/306528, résumé, lire en ligne [PDF]).
  3. (en) « UCLA Galactic Center Group », sur le site de l’UCLA.
  4. (en) « Surfing a Black Hole - Star Orbiting Massive Milky Way Centre Approaches to within 17 Light-Hours », sur European Southern Observatory, .
  5. (en) « Galactic Center Research at MPE », sur Institut Max-Planck de physique extraterrestre et en particulier « l’animation » montrant la trajectoire de l’étoile S2.
  6. (en) R. Schödel et al., « Closest Star Seen Orbiting the Supermassive Black Hole at the Centre of the Milky Way », Nature, vol. 419,‎ , p. 694 (DOI 10.1038/nature01121, résumé).
  7. « GRAVITY observe avec succès les abords du trou noir de la Voie Lactée », CNRS, .
  8. « La toute première image d’un trou noir », Le Temps,‎ (ISSN 1423-3967, lire en ligne, consulté le ).
  9. (en) Kazunori Akiyama, Antxon Alberdi et al., « First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole », The Astrophysical Journal, vol. 875, no 1,‎ , p. L1 (ISSN 2041-8213, DOI 10.3847/2041-8213/ab0ec7).
  10. Observatoire européen austral, Watch stars move around the Milky Way's supermassive black hole in deepest images yet, le 14 décembre 2021 (en)
  11. Site Science Post, Voici les images les plus nettes jamais prises du cœur de la Voie lactée, le 20 décembre 2021
  12. « Le trou noir central de la Voie lactée enfin révélé », Le Monde.fr,‎ (lire en ligne, consulté le )
  13. (en) A. Celotti, J. C. Miller et D. W. Sciama, « Astrophysical evidence for the existence of black holes », Classical and Quantum Gravity, vol. 16, no 12A,‎ , A3–A21 (DOI 10.1088/0264-9381/16/12A/301, arXiv astro-ph/9912186).
  14. (en) M. Volonteri et M. J. Rees, « Rapid Growth of High-Redshift Black Holes », The Astrophysical Journal, vol. 633, no 2,‎ , p. 624-629 (DOI 10.1086/466521, résumé).
  15. (en) « Early Black Holes Grew Up Quickly », sur Universe Today (en), .
  16. « Biggest black holes may grow inside 'quasistars' »
  17. « Première image directe d'un trou noir explusant un jet puissant », Observatoire européen austral,‎ (lire en ligne)
  18. Alain Riazuelo et Sylvie Rouat, « Voyage au cœur d'un trou noir », Sciences et Avenir, p. 14.
  19. (en) Daniel Bates, « Discovered: Biggest ever black hole that is so big it could swallow our entire solar system », The Daily Mail, .
  20. Françoise Combes, « Et si notre monde était né d'un trou noir », Sciences et Avenir, , p. 51.
  21. Laurent Sacco, « Les trous noirs géants se seraient formés avant leurs galaxies hôtes », Futura-Sciences, .
  22. « NGC6240, la galaxie aux trois trous noirs », Sciences et Avenir, (consulté le ).

Annexes

Articles connexes

Liens externes

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.