AccueilđŸ‡«đŸ‡·Chercher

Objet projectif

En théorie des catégories, un objet projectif est une forme de généralisation des modules projectifs. Les objets projectifs dans les catégories abéliennes sont utilisés en algÚbre homologique. La notion duale d'objet projectif est celle d'objet injectif (en).

DĂ©finition

Un objet dans une catégorie est dit projectif si pour tout épimorphisme et tout morphisme , il existe un morphisme tel que , c'est-à-dire que le diagramme suivant commute :

Autrement dit, tout morphisme se factorise par les Ă©pimorphismes [1].

Si C est localement petite, et donc qu'en particulier est un ensemble pour tout objet X de C, cette définition est équivalente à dire que le foncteur hom (également appelé foncteur coreprésentable) :

préserve les épimorphismes[2].

Objets projectifs dans les catégories abéliennes

Si la catégorie C est une catégorie abélienne (comme par exemple la catégorie des groupes abéliens), alors P est projectif si et seulement si

est un foncteur exact (oĂč Ab est la catĂ©gorie des groupes abĂ©liens).

Une catégorie abélienne est dite posséder suffisamment de projectifs si, pour tout objet de , il existe un objet projectif de et un épimorphisme de P vers A ou si, de maniÚre équivalente, il existe une suite exacte courte :

L'objectif de cette définition est de s'assurer que tout objet A admette une résolution projective (en), c'est-à-dire une suite exacte :

oĂč les objets sont projectifs.

Propriétés

Exemples

L'affirmation que tous les ensembles sont projectifs est Ă©quivalente Ă  l'axiome du choix[5].

Les objets projectifs de la catégorie des groupes abéliens sont les groupes abéliens libres.

Soit un anneau, et - Mod la catĂ©gorie (abĂ©lienne) des -modules Ă  gauche. Les objets projectifs de - Mod sont exactement les modules projectifs. Par consĂ©quent, est lui-mĂȘme un objet projectif dans - Mod. De maniĂšre duale, les objets injectifs dans - Mod sont exactement les modules injectifs.

La catégorie des -modules à gauche (resp. à droite) a de plus suffisamment de projectifs. C'est le cas, car pour tout -module à gauche (resp. à droite) , on peut considérer le module libre (et donc projectif) engendré par un ensemble qui est générateur pour (on peut en réalité prendre égal à ). La projection canonique est la surjection requise.

Dans la catégorie des espaces de Banach munis des contractions, les épimorphismes sont exactement les fonctions dont l'image est dense. Wiweger (1969) montre que l'espace nul est le seul objet projectif de cette catégorie. Il existe cependant des espaces non triviaux et projectifs par rapport à la classe des contractions surjectives. Dans la catégorie des espaces vectoriels normés munis des contractions (et des fonctions surjectives comme "surjections"), les objets projectifs sont exactement les espaces [6] :

Références

(en) Cet article est partiellement ou en totalitĂ© issu de l’article de WikipĂ©dia en anglais intitulĂ© « Projective object » (voir la liste des auteurs).
  1. Awodey 2010, p. 33.
  2. (en) Saunders Mac Lane, Categories for the Working Mathematician [dĂ©tail de l’édition], p. 118.
  3. Steve Awodey, Category Theory, Oxford University Press, (ISBN 978-0-19-155324-0 et 0-19-155324-7, OCLC 740446073), § 2.1.
  4. Awodey 2010, p. 72.
  5. (en) Andreas Blass (en), « Injectivity, projectivity, and the axiom of choice », Trans. Amer. Math. Soc., vol. 255,‎ , p. 31-59 (DOI 10.1090/S0002-9947-1979-0542870-6).
  6. (en) Z. Semadeni, « Projectivity, injectivity and duality », Rozprawy Mat., vol. 35,‎ (lire en ligne), 47 p.
Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplĂ©mentaires peuvent s’appliquer aux fichiers multimĂ©dias.