Accueil🇫🇷Chercher

Eau souterraine

Les eaux souterraines sont toutes les eaux se trouvant sous la surface du sol, dans la zone de saturation et en contact direct avec le sol ou le sous-sol.

L'Œil du Néez (Rébénacq, Pyrénées-Atlantiques) est une émergence karstique captée par la ville de Pau.

En tant que ressource naturelle vitale et plus ou moins renouvelable et parfois transfrontalières, ces eaux posent des questions juridiques particulières. C'est parfois une source de conflit inter ethnique ou entre pays.

Les aquifères souterrains sont la réserve majeure (98 à 99 %)[1]de l'eau douce exploitable sur les terres émergées. L’utilisation de l’eau souterraine se répartit de façon variable d’un pays à l’autre[1]. Les pourcentages d’utilisation, selon les trois catégories, sont les suivants :

  • 65 % (0 Ă  97 %) pour l’irrigation ;
  • 25 % (0 Ă  93 %) pour l'eau potable ;
  • 10 % (0 Ă  64 %) pour l'industrie.

La carte des réserves aquifères connues en 2008 (publiée par l'UNESCO) montre 273 aquifères transfrontaliers (68 en Amérique, 38 en Afrique, 65 en Europe de l'Est, 90 en Europe occidentale et 12 en Asie où le recensement n'était pas terminé). Les aquifères majeurs connus en 2008 étaient en Amérique du Sud et Afrique du Nord. Les grands aquifères d'Afrique centrale sont encore mal explorés et rarement exploitées.

La multiplication des pompes électriques et petits systèmes de pompage et forage a fortement augmenté la pression sur les nappes, souvent surexploitées dans les zones habitées et de grandes cultures et parfois déjà pollués. Leur exploitation pose aussi des questions sur nos responsabilités à l'égard des générations futures ou de l'amont vers l'aval (du point de vue du sens de circulation des masses d'eau souterraines, ou de leur alimentation via les bassins versants en surface le cas échéant).

Il existe des eaux fossiles non renouvelables aux échelles humaines de temps et des aquifères profonds qui ne sont que très lentement réalimentés.

Les trois formes de l'eau souterraine

L'eau de constitution

C'est l'eau qui rentre dans la structure cristalline des minéraux (exemple : gypse CaSO4, 2H2O).

L'eau de rétention

  • L'eau d'adsorption (liĂ©e). Les molĂ©cules d'eau dipolaires sont attirĂ©es par des effets de surface sur des ensembles ionisĂ©s (comme les argiles) en couche fine. L'eau d'adsorption n'est pas chassĂ©e par centrifugation.
  • L'eau d'adhĂ©sion (pelliculaire). L'eau est retenue Ă  la surface des grains par une attraction Ă©lectrique moins forte que dans l'adsorption, elle peut se dĂ©placer.
  • L'eau capillaire (Frange capillaire) : elle se trouve dans les pores, c'est l'eau d'absorption (l'eau recherchĂ©e par les racines).

L'eau libre

C'est l'eau de gravité, l'eau disponible pour les nappes phréatiques et les aquifères, et qui est donc disponible et exploitable, par un forage ou un puits.

Le suivi des eaux souterraines

Pour le suivi des niveaux de plafond de la nappe, le suivi se fait via des piézomètres ou puits si la nappe n'est pas trop profonde. Concernant le mouvement des masses d'eau, il se fait via des analyses physicochimiques, à partir de puits ou forages, ou dans certains cas au moyen de traceurs (colorants, isotopes radioactifs[2] introduits ou issus des essais nucléaires atmosphériques ou d'un accident tel que la catastrophe de Tchernobyl). Dans certains sols et sous sols, il doit tenir compte de phénomènes complexes tels l'exclusion anionique. Les modèles doivent donc être adaptés au contexte et calibrés sur le terrain[3]. On a montré que les solutés, anions en particulier peuvent dans certaines conditions circuler beaucoup plus vite que l'eau elle-même[4] - [5], ce qui peut être important par exemple dans le cas d'études de risque de pollution.

Aspects juridiques

Des problèmes de responsabilités partagées peuvent exister à toutes les échelles frontalières (de propriété, communale, agglomération, pays, etc.).

  • En Europe, la commission europĂ©enne a imposĂ© une gestion par masse d'eau (en cours d'organisation via la directive cadre sur l'eau (DCE).
  • En Afrique, l'aquifère des Grès nubiens qui reprĂ©sente l'un des plus grands volumes d'eau connus est conjointement gĂ©rĂ© par l'Égypte, la Libye, le Soudan et le Tchad qui en dĂ©pendent pour une grande partie de leurs ressources en eau douce.
  • Dans le monde, la Convention des Nations unies de 1997 sur les cours d’eau transfrontaliers ne traitait pas des masses d'eau souterraines (sauf 20 % d'entre elles, qui Ă©taient reliĂ©es Ă  un fleuve international). Ailleurs, il n'existe d'ailleurs gĂ©nĂ©ralement toujours pas de gestion concertĂ©e des nappes souterraines transfrontalières, mais une rĂ©solution des Nations unies (en ) encourage une gestion Ă©coresponsable et durable des aquifères transfrontalier via des critères de bonne conduite en termes de non-pollution et de non-surexploitation des ressources d'un ou plusieurs pays par un ou plusieurs des pays riverains. 19 articles de cette rĂ©solution ont Ă©tĂ© rĂ©digĂ©s par les hydrologues de l'UNESCO Ă  la suite d'une demande faite en 2002 par la Commission de droit international des Nations unies. Cette rĂ©solution n'a qu'une valeur morale et Ă©thique, mais l'ONU espère pouvoir la transformer en Convention internationale lors de l’AG de l'ONU de 2011 Ă  New York après discussions Ă  Paris en .

Santé

Toutes les eaux souterraines ne sont pas potables[6]. Localement, elles peuvent ĂŞtre radioactives, très salĂ©es ou minĂ©ralisĂ©es ou polluĂ©es ou naturellement contaminĂ©es (par de l'arsenic par exemple). Le suivi, le contrĂ´le et le cas Ă©chĂ©ant la conservation ou l'amĂ©lioration de la qualitĂ© de l'eau souterraine sont des enjeux de santĂ©, mais aussi de santĂ© environnementale. En Europe, il relève aussi de la directive cadre sur l'eau (DCE). par exemple, sur 1 200 sources et forages du Puy-de-DĂ´me, 10 Ă  15 % des analyses prĂ©sentent des traces d'arsenic a priori d'origine naturelle ; parfois Ă  plus de 10 ÎĽg/L (norme de potabilitĂ©)[6].

Carte des risques pour les eaux souterraines contaminées

Environ un tiers de la population mondiale consomme de l’eau potable provenant des nappes phréatiques. Un nombre approximatif de 300 millions de personnes puisent leur eau dans des nappes phréatiques fortement polluées par de l’arsenic et du fluorure[7]. Ces éléments traces sont le plus souvent d’origine naturelle et proviennent des roches et des sédiments lessivés par l’eau.

En 2008, l’Institut Suisse de Recherche de l’Eau Eawag a prĂ©sentĂ© une nouvelle mĂ©thode permettant de Ă©tablir des cartes des risques pour les substances toxiques gĂ©ogènes dans les eaux souterraines. Cela permet de dĂ©terminer plus efficacement quelles sources devraient ĂŞtre contrĂ´lĂ©es[8] - [9] - [10] - [11].

En 2016, le groupe de recherche a mis ses connaissances en libre accès sur la plate-forme GAP[12]. Celle-ci permet aux spécialistes du monde entier de charger leurs propres données de mesure, de les visualiser, et de créer des cartes des risques pour des régions de leur choix. La plate-forme sert également de forum d’échange de connaissances afin de contribuer au développement de méthodes visant à éliminer les substances toxiques de l’eau.

Écologie

En Europe, la directive cadre sur l'eau impose que les masses d'eau souterraine retrouvent (avant 2015 dernière limite) le « bon état », c'est-à-dire leur état de référence. Leur évaluation qualitative et quantitative doit être faite par les moyens scientifiques appropriés[6].

Épuisement

L'eau souterraine, source de 40 % des besoins en eau de l'Inde, s'épuise rapidement selon un rapport publié en 2018 par un organisme gouvernemental. Vingt et une villes indiennes - dont Delhi, Bengaluru, Chennai et Hyderabad - devraient manquer d'eau souterraine dès 2020, et 40 % de la population indienne n'aura pas accès à l'eau potable en 2030[13].

Une eau fossile est une eau souterraine présente dans un aquifère depuis une période qui excède le temps de la civilisation humaine ; à ce titre, c'est une ressource non renouvelable.

Voir aussi

Articles connexes

Liens externes

Notes et références

  1. « Exploitation et utilisations des eaux souterraines dans le Monde », sur hydrologie.org
  2. (en) C.J. Barnes, G.B. Allison, Tracing of water movement in the unsaturated zone using stable isotopes of hydrogen and oxygen ; Journal of Hydrology, Volume 100, Issues 1-3, 30 July 1988, Pages 143-176 (Résumé)
  3. (en) P. Małloszewski, A. Zuber, On the calibration and validation of mathematical models for the interpretation of tracer experiments in groundwater ; DOI:10.1016/0309-1708(92)90031-V (Résumé)
  4. (en) H. Gvirtzman & S. M. Gorelick, Dispersion and advection in unsaturated porous media enhanced by anion exclusion ; Nature 352, 793 - 795 (29 August 1991); doi:10.1038/352793a0 (Résumé)
  5. (en) Bresler, Eshel, Anion exclusion and coupling effects in nonsteady transport through unsaturated soils. I. Theory ; Soil Science Society of America Proceedings (1973), 37(5), 663-9 CODEN: SSSAA8; (ISSN 0038-0776). English.
  6. Ariane Blum, Laurence Chery, HĂ©lène Legrand, « L’eau souterraine est-elle toujours potable Ă  l’état naturel ? Â», GĂ©osciences, no 5, mars 2007, p. 58-67.
  7. (en) « Eawag (2015) Geogenic Contamination Handbook – Addressing Arsenic and Fluoride in Drinking Water. C.A. Johnson, A. Bretzler (Eds.), Swiss Federal Institute of Aquatic Science and Technology (Eawag), Duebendorf, Switzerland. », sur eawag.ch
  8. (en) Amini, M.; Mueller, K.; Abbaspour, K.C.; Rosenberg, T.; Afyuni, M.; Møller, M.; Sarr, M.; Johnson, C.A., « Statistical modeling of global geogenic fluoride contamination in groundwaters. », Environmental Science and Technology, 42(10), doi:10.1021/es071958y,‎ , p. 3662-3668
  9. (en) Amini, M.; Abbaspour, K.C.; Berg, M.; Winkel, L.; Hug, S.J.; Hoehn, E.; Yang, H.; Johnson, C.A., « Statistical modeling of global geogenic arsenic contamination in groundwater », Environmental Science and Technology 42 (10), 3669-3675. doi:10.1021/es702859e,‎
  10. (en) Winkel, L.; Berg, M.; Amini, M.; Hug, S.J.; Johnson, C.A., « Predicting groundwater arsenic contamination in Southeast Asia from surface parameters », Nature Geoscience, 1, 536–542. doi:10.1038/ngeo254,‎
  11. Rodríguez-Lado, L.; Sun, G.; Berg, M.; Zhang, Q.; Xue, H.; Zheng, Q.; Johnson, C.A., « Groundwater arsenic contamination throughout China. », Science, 341(6148), 866-868, doi:10.1126/science.1237484,‎
  12. (en)Mapping and information platform for geogenic groundwater contamination, sur gapmaps.org, consulté le 10 novembre 2016.
  13. (en) Sam Relph, « Indian villages lie empty as drought forces thousands to flee », The Guardian,‎ (lire en ligne)
Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.