Ătude de fonction
En mathématiques, une étude de fonction est la détermination de certaines propriétés d'une fonction numérique, en général d'une variable réelle, pour en tracer une représentation graphique à partir d'une expression analytique ou d'une équation fonctionnelle, ou encore pour en déduire le nombre et la disposition d'antécédents pour diverses valeurs numériques.
L'étude passe d'abord par la détermination du domaine de définition et vise essentiellement la description des variations, voire des lignes de niveau dans le cas de fonctions de plusieurs variables.
Ătude graphique
Lorsqu'une fonction est donnée par une représentation de courbe, la lecture graphique permet de lire son domaine de définition, à savoir l'ensemble des points de l'axe des abscisses (en général un intervalle ou une réunion d'intervalles) pour lesquels la courbe associe une ordonnée.
Les intersections de la courbe avec l'axe des abscisses indiquent les points d'annulation de la fonction, autrement dit les antécédents de 0. Si la fonction est continue, elle est de signe constant sur les intervalles du domaine de définition qui ne contiennent pas de point d'annulation (en dehors éventuellement de leurs extrémités). Il est possible alors de déterminer ce signe sur chacun de ces intervalles d'aprÚs la position relative de la courbe et de l'axe des abscisses :
- si la courbe est au-dessus de l'axe des abscisses, la fonction est positive sur cet intervalle ;
- si la courbe est en dessous de l'axe des abscisses, la fonction est négative sur cet intervalle.
La lecture graphique permet aussi de repérer les intervalles en abscisse sur lesquels la fonction est monotone, c'est-à -dire soit croissante, soit décroissante. Ces intervalles sont a priori différents des intervalles de signe constant.
Toutes ces informations peuvent ĂȘtre rassemblĂ©es dans un tableau de variations.
Ă partir de l'expression
Lorsque la fonction est donnée par une expression, éventuellement définie par morceaux, son domaine de définition est déterminé par ceux des fonctions de référence utilisées et des domaines de validité des opérations en jeu.
Les zéros correspondent aux solutions de l'équation et le signe est décrit par l'ensemble des solutions de l'une ou l'autre inéquation :
différence de fonctions strictement croissantes.
Les méthodes de décomposition en fonctions de référence
ne permettent pas d'obtenir les variations de la fonction.
Dans certains cas simples, les variations de la fonction peuvent ĂȘtre obtenues Ă l'aide d'un tableau de dĂ©composition de la fonction en fonctions de rĂ©fĂ©rence, mais cette mĂ©thode ne peut aboutir dĂšs lors qu'intervient une opĂ©ration pour laquelle les variations du rĂ©sultat ne peuvent ĂȘtre dĂ©duites des variations des opĂ©randes.
Si la fonction est dérivable, le calcul de la dérivée et l'étude du signe de celle-ci permettent en général de déterminer plus efficacement les variations de la fonction.
L'étude de fonction peut se poursuivre avec la détermination des limites aux bornes du domaine de définition, puis par la recherche d'asymptotes à la courbe.
à partir d'une équation différentielle
Lorsque la fonction est dĂ©finie comme solution d'une Ă©quation diffĂ©rentielle, les informations qui peuvent ĂȘtre obtenues dĂ©pendent de la complexitĂ© de l'Ă©quation.
Ăquation autonome d'ordre 1 Ă variables sĂ©parĂ©es
Dans le cas d'une Ă©quation autonome d'ordre 1 Ă variables sĂ©parĂ©es de la forme oĂč est une fonction continue, toute solution est soit constante avec pour valeur un point d'annulation de , soit strictement monotone avec des valeurs comprises entre deux tels points d'annulation consĂ©cutifs (ou limites de la fonction ).
Voir aussi
Bibliographie
Stella Baruk, « Fonction », dans Dictionnaire de mathématiques élémentaires [détail des éditions], § V.
Lien externe
Programme de mathĂ©matiques de la seconde en France, BO no 30 du , p. 3/10, § 1 Fonctions â Ătude qualitative de fonctions