Accueil🇫🇷Chercher

Onde de Stokes

Les ondes de Stokes sont des ondes de gravité rencontrées sur la surface de la mer, des vagues. Elles ont des solutions des équations d'Euler pour un fluide incompressible irrotationnel à surface libre soumis à un champ de gravité qui ont été obtenues par George Gabriel Stokes par la théorie des perturbations en 1847[1] - [2] dans le cas d'un milieu de profondeur infinie.

Ondes de Stokes quasi-planes créées dans le sillage d'un navire..

Ondes de gravité

Équations d'Euler pour un fluide incompressible irrotationnel soumis à un champ de gravité

Pour un écoulement incompressible irrotationnel la vitesse dérive d'un potentiel ψ, les équations d'incompressibilité et de quantité de mouvement s'écrivent

ρ est la masse volumique, p la pression, g la gravité et z l'altitude.

Milieu à surface libre

Dans le cadre d'un problème bidimensionnel, on désigne par s(x) l'altitude de la surface par rapport à sa valeur au repos z = 0.

L'équation ci-dessus s'écrit à la surface

p0 est la pression atmosphérique.

Cette surface est décrite par l'équation cinématique

Par ailleurs la condition cinématique au fond z = - h(x) s'écrira

Dans le cas particulier d'un fond plat utilisé par la suite on a

Solutions périodiques

Ondes de Stokes d'ordre 1 (sinusoïdale) et 2 en milieu peu profond.

On cherche une solution au système constitué par les équations [1], [2], [3], [4] sous forme d'ondes périodiques progressives

θ est la phase de l'onde, k le nombre d'onde et c la vitesse de phase.

Pour s, on utilise un développement en série de Fourier autour de la solution de repos (s = 0)

a est l'amplitude.

Il lui correspond le développement suivant pour ψ[4], suggéré par la solution du problème linéarisé[5]

Pour ω, on choisit une forme paire de l'amplitude compatible avec la périodicité en s (ψ n'est pas nécessairement périodique)

La solution du système limité au second ordre conduit aux résultats suivants[4]

  • relation de dispersion
  • coefficients du développement pour s
μ2 est le rapport des amplitudes des deux premières composantes de l'onde.
  • coefficients du développement pour ψ
  • Vitesse de phase

Propriétés des solutions

On a en particulier

  • en eau profonde (k h0 → ∞
L'approche est valide pour des hauteurs de vague de faible amplitude devant la longueur d'onde
λ = 2π/k la longueur d'onde.
  • en eau peu profonde k h0 → 0
U le nombre d'Ursell.
Pour une eau peu profonde l'approche est utilisable lorsque

Autres propriétés

Références

  1. (en) G. G. Stokes, « On the Theory of Oscillatory Waves », Transactions of the Cambridge Philosophical Society, vol. 8, , p. 441–455 (lire en ligne)
  2. (en) G. G. Stokes, « Supplement to a paper on the theory of oscillatory waves », Cambridge University Press, , p. 314-326 (lire en ligne)
  3. (en) Lev Davidovitch Landau et Evgueni Mikhaïlovitch Lifshitz, Volume 6 of Course of Theoretical Physics : Fluid Mechanics, Pergamon Press, 1987
  4. (en) Gerald B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons, (ISBN 978-0-4713-5942-5, lire en ligne)
  5. Michel Talon, « Ondes de surface », sur LPTHE Université Paris VI,
  6. (en) S. C. De, « Contributions to the Theory of Stokes Waves », Mathematical Proceedings of the Cambridge Philosophical Society, vol. 51, no 4, , p. 713–736
  7. (en) M. A. Grant, « Standing Stokes Waves of Maximum Height », Journal of Fluid Mechanics, vol. 60, no 3, , p. 593–604
  8. (en) Michel K. Ochi, « Hurricane-Generated Seas », Elsevier, , p. 119 (ISBN 9780080443126)
  9. (en) M. A. Tayfun, « Narrow-band Nonlinear Sea Waves », Journal of Geophysical Research, vol. 85, no C3, , p. 1548–1552
  10. Tullio Levi-Civita, « Détermination rigoureuse des ondes permanentes d'ampleur finie », Mathematische Annalen, vol. 93, , p. 264–314 (lire en ligne)
  11. Dirk Jan Struik, « Détermination rigoureuse des ondes irrotationelles périodiques dans un canal à profondeur finie », Mathematische Annalen, vol. 95, no 1, , p. 595–634 (lire en ligne)
  12. (en) Thomas Brooke Benjamin et Jim E. Feir, « The Disintegration of Wave Trains on Deep Water. Part 1. Theory », Journal of Fluid Mechanics, vol. 27, no 3, , p. 417-430 (lire en ligne)
  13. (en) Kristian Dysthe, Harald E. Krogstad et Peter Müller, « Oceanic Rogue Waves », Annual Review of Fluid Mechanics, vol. 40, , p. 287-310

Voir aussi

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.