Accueil🇫🇷Chercher

Loi de Fisher

En théorie des probabilités et en statistiques, la loi de Fisher ou encore loi de Fisher-Snedecor ou encore loi F de Snedecor est une loi de probabilité continue[1] - [2] - [3]. Elle tire son nom des statisticiens Ronald Aylmer Fisher et George Snedecor.

Fisher-Snedecor
Image illustrative de l’article Loi de Fisher
Densité de probabilité

Image illustrative de l’article Loi de Fisher
Fonction de répartition

Paramètres degré de liberté
Support
Densité de probabilité
Fonction de répartition
Espérance pour
Mode pour
Variance pour
Asymétrie pour
Kurtosis normalisé pour

La loi de Fisher survient très fréquemment en tant que loi de la statistique de test lorsque l'hypothèse nulle est vraie, dans des tests statistiques, comme les tests du ratio de vraisemblance, dans les tests de Chow utilisés en économétrie, ou encore dans l'analyse de la variance (ANOVA) via le test de Fisher.

Caractérisation

Une variable aléatoire réelle distribuée selon la loi de Fisher peut être construite comme le quotient de deux variables aléatoires indépendantes, U1 et U2, distribuées chacune selon une loi du χ² et ajustées pour leurs nombres de degrés de liberté, respectivement d1 et d2 : .

La densité de probabilité d'une loi de Fisher, F(d1, d2), est donnée par pour tout réel x ≥ 0, où d1 et d2 sont des entiers positifs et B est la fonction bêta.

La fonction de répartition associée est : I est la fonction bêta incomplète régularisée.

La loi binomiale est liée à la loi de Fisher par la propriété suivante[4]: si X suit une loi binomiale de paramètres n et p, et si k est un entier compris entre 0 et n, alors où F suit une loi de Fischer de paramètres avec

L'espérance, la variance valent respectivement pour d2 > 2 et pour d2 > 4. Pour d2 > 8, le kurtosis normalisé est .

Généralisation

Une généralisation de la loi de Fisher est la loi de Fisher non-centrée (en).

Lois associées et propriétés

  • Si alors est distribuée selon une loi du χ² ;
  • La loi est équivalente à la loi T2 de Hotelling ;
  • Si alors la loi inverse est aussi une loi de Fisher ;
  • Si est distribuée selon une loi de Student alors ;
  • Si est distribuée selon une loi normale alors ;
  • Si et alors est distribuée selon une loi bêta;
  • Si est le quantile d'ordre pour et que est le quantile d'ordre pour alors .

Table de valeurs des quantiles

Définition du 95e centile d'une loi de Fisher-Snedecor.

Le tableau suivant fournit les valeurs de certains quantiles de la loi de Fisher pour différents paramètres ν1 et ν2. Pour chaque paramètre, le quantile donné est tel que la probabilité pour qu'une variable suivant une loi de Fisher lui soit inférieur est de . Ainsi, pour et et , si X suit une loi de Fisher avec ces paramètres , on lit dans la table que

Table de Fisher-Snedecor, 1-α = 0.95

(dén.)
(numérateur)
1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 80 100 200 500 1 000
1 161.45199.50215.71224.58230.16233.99236.77238.88240.54241.88 248.02250.10251.14251.77252.20252.72253.04253.68254.06254.19
2 18.5119.0019.1619.2519.3019.3319.3519.3719.3819.40 19.4519.4619.4719.4819.4819.4819.4919.4919.4919.49
3 10.139.559.289.129.018.948.898.858.818.79 8.668.628.598.588.578.568.558.548.538.53
4 7.716.946.596.396.266.166.096.046.005.96 5.805.755.725.705.695.675.665.655.645.63
5 6.615.795.415.195.054.954.884.824.774.74 4.564.504.464.444.434.414.414.394.374.37
6 5.995.144.764.534.394.284.214.154.104.06 3.873.813.773.753.743.723.713.693.683.67
7 5.594.744.354.123.973.873.793.733.683.64 3.443.383.343.323.303.293.273.253.243.23
8 5.324.464.073.843.693.583.503.443.393.35 3.153.083.043.023.012.992.972.952.942.93
9 5.124.263.863.633.483.373.293.233.183.14 2.942.862.832.802.792.772.762.732.722.71
10 4.964.103.713.483.333.223.143.073.022.98 2.772.702.662.642.622.602.592.562.552.54
20 4.353.493.102.872.712.602.512.452.392.35 2.122.041.991.971.951.921.911.881.861.85
30 4.173.322.922.692.532.422.332.272.212.16 1.931.841.791.761.741.711.701.661.641.63
40 4.083.232.842.612.452.342.252.182.122.08 1.841.741.691.661.641.611.591.551.531.52
50 4.033.182.792.562.402.292.202.132.072.03 1.781.691.631.601.581.541.521.481.461.45
60 4.003.152.762.532.372.252.172.102.041.99 1.751.651.591.561.531.501.481.441.411.40
70 3.983.132.742.502.352.232.142.072.021.97 1.721.621.571.531.501.471.451.401.371.36
80 3.963.112.722.492.332.212.132.062.001.95 1.701.601.541.511.481.451.431.381.351.34
90 3.953.102.712.472.322.202.112.041.991.94 1.691.591.531.491.461.431.411.361.331.31
100 3.943.092.702.462.312.192.102.031.971.93 1.681.571.521.481.451.411.391.341.311.30
200 3.893.042.652.422.262.142.061.981.931.88 1.621.521.461.411.391.351.321.261.221.21
300 3.873.032.632.402.242.132.041.971.911.86 1.611.501.431.391.361.321.301.231.191.17
500 3.863.012.622.392.232.122.031.961.901.85 1.591.481.421.381.351.301.281.211.161.14
1 000 3.853.002.612.382.222.112.021.951.891.84 1.581.471.411.361.331.291.261.191.131.11
2 000 3.853.002.612.382.222.102.011.941.881.84 1.581.461.401.361.321.281.251.181.121.09

Voir aussi

Notes et références

  1. (en) Milton Abramowitz (éditeur) et Irene A. Stegun (éditeur), Handbook of Mathematical Functions : With Formulas, Graphs, and Mathematical Tables, New York, Dover Publications, , 1046 p. (ISBN 978-0-486-61272-0, lire en ligne)
  2. NIST (2006). Engineering Statistics Handbook - F Distribution
  3. (en) Alexander Mood, Franklin A. Graybill et Duane C. Boes, Introduction to the Theory of Statistics, McGraw-Hill, , 3e éd. (ISBN 978-0-07-042864-5), p. 246-249
  4. E. Morice, « Quelques modèles mathématiques de durée de vie », Revue de statistique appliquée, t. 14, no 1, , p. 45-126 (lire en ligne), p. 68

Liens externes

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.