Formule d'inversion de Möbius
La formule d'inversion de Möbius classique a été introduite dans la théorie des nombres au cours du XIXe siÚcle par August Ferdinand Möbius. Elle a été généralisée plus tard à d'autres « formules d'inversion de Möbius ».
ĂnoncĂ©
La version classique[1] - [2] déclare que pour toutes fonctions arithmétiques f et g, on a
si et seulement si f est la transformée de Möbius de g, c.-à -d.
oĂč ÎŒ est la fonction de Möbius et les sommes portent sur tous les diviseurs strictement positifs d de n.
L'Ă©quivalence reste vraie si les fonctions f et g (dĂ©finies sur l'ensemble â* des entiers strictement positifs) sont Ă valeurs dans un groupe abĂ©lien (vu comme â€-module).
Preuve par convolution
Convolution de Dirichlet
On se place dans l'anneau commutatif F des fonctions arithmétiques, défini comme suit. L'ensemble F des fonctions arithmétiques est naturellement muni d'une addition qui en fait un groupe abélien. On le munit d'une deuxiÚme loi interne, la convolution de Dirichlet, en associant à deux éléments f et g de F la fonction f ⻠g définie par :
Cette loi sur F est associative, commutative et distributive par rapport à l'addition, et il existe un élément neutre : la fonction notée ici Ύ1 et définie par Ύ1(1) = 1 et pour tout entier n > 1, Ύ1(n) = 0.
Le groupe des inversibles (FĂ, â») de cet anneau est le groupe abĂ©lien constituĂ© des fonctions f telles que f(1) â 0 (les fonctions multiplicatives en forment un sous-groupe).
DĂ©monstration
En notant 1 la fonction constante 1(n) = 1, la formule d'inversion se réécrit :
Cette Ă©quivalence rĂ©sulte[1] de la dĂ©finition de ÎŒ comme l'inverse de 1 pour la convolution â» :
qui donne bien :
et
- .
Ces calculs restent valables pour f et g Ă valeurs dans un groupe abĂ©lien[3] (G, +) car le sous-anneau de F constituĂ© des applications Ă valeurs entiĂšres contient ÎŒ et 1, et les applications de â* dans G forment un module Ă droite sur cet anneau, la loi externe Ă©tant la convolution dĂ©finie par les mĂȘmes formules.
Généralisation et preuve combinatoire
Contexte
Une approche combinatoire permet de gĂ©nĂ©raliser l'Ă©tude ci-dessus[4]. Soit A un ensemble partiellement ordonnĂ© dont la relation d'ordre est notĂ©e â€. On dĂ©finit les chaĂźnes par[5] :
Soient a et b deux éléments de A tels que a †b. Pour tout entier naturel p, on appelle « chaßne de longueur p joignant a à b », toute suite finie (x0, x1, ..., xp) telle que :
et l'on note cp(a, b) le nombre de ces chaĂźnes.
En supposant que l'ordre sur A est localement fini (en), c'est-Ă -dire qu'il n'existe qu'un nombre fini d'Ă©lĂ©ments situĂ©s entre a et b, Gian-Carlo Rota construit alors une nouvelle fonction de Möbius, qu'il note ÎŒA, caractĂ©risĂ©e par[6] :
Soient a et b deux éléments de A tel que a < b :
Elle gĂ©nĂ©ralise la fonction de Möbius classique ÎŒ[7] :
Pour A = â*, ordonnĂ© par « a †b lorsque a est un diviseur de b », on a
Formule d'inversion de Rota
La fonction ÎŒA vĂ©rifie la formule d'inversion suivante[8], qui gĂ©nĂ©ralise celle pour ÎŒ :
En effet, le produit de convolution de Dirichlet se gĂ©nĂ©ralise, permettant d'associer Ă tout ordre localement fini A son algĂšbre d'incidence (en), et ÎŒA s'interprĂšte alors comme un inverse dans cet anneau unitaire. Ceci fournit in fine une preuve trĂšs courte â analogue Ă celle donnĂ©e plus haut pour ÎŒ â de la formule d'inversion ci-dessus, mais nĂ©cessite de dĂ©velopper au prĂ©alable cette thĂ©orie[4] - [9], alors qu'un calcul direct est possible :
En appliquant cette formule à d'autres ensembles partiellement ordonnés localement finis que celui des entiers strictement positifs ordonné par divisibilité, on obtient d'autres formules d'inversion de Möbius, comprenant entre autres le principe d'inclusion-exclusion de Moivre.
Lorsque l'ordre utilisé est l'ordre usuel sur les entiers naturels non nuls, on obtient la formule suivante, utile en combinatoire :
si F et G sont deux fonctions dĂ©finies sur l'intervalle [1, +â[ de â Ă valeurs complexes et si α et ÎČ sont deux fonctions arithmĂ©tiques inverses l'une de l'autre pour la convolution de Dirichlet (en particulier si α = 1 et ÎČ = ÎŒ), alors[10]
- .
Applications
Des exemples sont donnés dans l'article Fonction multiplicative.
Arithmétique modulaire
L'indicatrice d'Euler Ï vĂ©rifie :
La formule d'inversion donne alors :
PolynĂŽme cyclotomique
La formule d'inversion de Möbius est valable pour toute fonction f de N* dans un groupe abélien. Si ce groupe est noté multiplicativement, la formule devient :
En prenant, comme groupe multiplicatif, celui des fractions rationnelles non nulles à coefficients rationnels et, comme fonction f, celle qui associe à tout entier n > 0 le ne polynÎme cyclotomique Ίn, on obtient, en vertu de l'égalité
un moyen de calculer le ne polynĂŽme cyclotomique :
Ces deux équations précisent celles du paragraphe précédent, qui correspondent au degré des polynÎmes en jeu.
PolynÎme irréductible et corps fini
Certains codes correcteurs, comme les codes cycliques sont construits Ă l'aide de l'anneau des polynĂŽmes Ă coefficients dans le corps fini Fq Ă q Ă©lĂ©ments et d'un polynĂŽme irrĂ©ductible et unitaire de degrĂ© n, oĂč n est premier avec q. C'est l'une des raisons pour lesquelles on s'intĂ©resse au nombre mn(q) de polynĂŽmes irrĂ©ductibles unitaires de degrĂ© n Ă coefficients dans Fq. Cette question est un exemple de problĂšme de dĂ©nombrement faisant intervenir la fonction de Möbius.
On démontre algébriquement que
Par inversion de Möbius, on en déduit[9] :
Notes et références
- (en) Cet article est partiellement ou en totalitĂ© issu de lâarticle de WikipĂ©dia en anglais intitulĂ© « Möbius inversion formula » (voir la liste des auteurs).
- Cet article est partiellement ou en totalité issu de l'article intitulé « Fonction de Möbius » (voir la liste des auteurs).
- Françoise Badiou, « Formule d'inversion de Möbius », SĂ©minaire Delange-Pisot-Poitou ThĂ©orie des nombres, vol. 2, exp. 1,â , p. 3 (lire en ligne).
- G. H. Hardy et E. M. Wright (trad. de l'anglais par F. Sauvageot), Introduction à la théorie des nombres [« An Introduction to the Theory of Numbers »], Paris/Heidelberg, Vuibert-Springer, , 568 p. (ISBN 978-2-7117-7168-4), p. 301, th. 266 et 267.
- (en) Rudolf Lidl et GĂŒnter Pilz (en), Applied Abstract Algebra, Springer, (lire en ligne), p. 147.
- (en) G.-C. Rota, « On the foundations of combinatorial theory, I: Theory of Möbius functions », Z. Wahrscheinlichkeitstheorie u. verw. Gebiete, vol. 2, 1963, p. 340-368.
- IREM de Marseille, Cours et activités en arithmétiques pour les classes terminales (lire en ligne), p. 75.
- IREM-Marseille, p. 76.
- IREM-Marseille, p. 80.
- IREM-Marseille, p. 77.
- R. Rolland, Fonction de Möbius - Formule de Rota, CNRS, Institut de mathématiques de Luminy.
- (en) Tom M. Apostol, Introduction to Analytic Number Theory, Springer, coll. « UTM (en) » (no 7), , 340 p. (ISBN 978-0-387-90163-3, lire en ligne), p. 40, th. 2.22.