Accueil🇫🇷Chercher

Graphe icosidodécaédrique

Le graphe icosidodécaédrique est, en théorie des graphes, un graphe 4-régulier possédant 30 sommets et 60 arêtes.

Graphe icosidodécaédrique
Nombre de sommets 30
Nombre d'arêtes 60
Distribution des degrés 4-régulier
Rayon 5
Diamètre 5
Maille 3
Automorphismes 120
Nombre chromatique 3
Indice chromatique 4
Propriétés Arête-transitif
Hamiltonien
Planaire
Régulier
Sommet-transitif

Construction

Il existe treize graphes correspondant aux squelettes des treize solides d'Archimède. Le graphe icosidodécaédrique est celui associé à l'icosidodécaèdre, un solide à 32 faces.

Les douze autres graphes squelettes d'Archimède sont le graphe tétraédrique tronqué, le graphe hexaédrique tronqué, le graphe octaédrique tronqué, le graphe dodécaédrique tronqué, le graphe icosaédrique tronqué, le graphe cuboctaédrique, le graphe cuboctaédrique adouci, le graphe dodécaédrique adouci, le graphe rhombicuboctaédrique, le graphe cuboctaédrique tronqué, le graphe rhombicosidodécaédrique et le graphe icosidodécaédrique tronqué.

Propriétés

Propriétés générales

Le diamètre du graphe icosidodécaédrique, l'excentricité maximale de ses sommets, est 5, son rayon, l'excentricité minimale de ses sommets, est 5 et sa maille, la longueur de son plus court cycle, est 3. Il s'agit d'un graphe 4-sommet-connexe et d'un graphe 4-arête-connexe, c'est-à-dire qu'il est connexe et que pour le rendre déconnecté il faut le priver au minimum de 4 sommets ou de 4 arêtes.

Coloration

Le nombre chromatique du graphe icosidodécaédrique est 3. C'est-à-dire qu'il est possible de le colorer avec 3 couleurs de telle façon que deux sommets reliés par une arête soient toujours de couleurs différentes. Ce nombre est minimal.

L'indice chromatique du graphe icosidodécaédrique est 4. Il existe donc une 4-coloration des arêtes du graphe telle que deux arêtes incidentes à un même sommet soient toujours de couleurs différentes. Ce nombre est minimal.

Propriétés algébriques

Le groupe d'automorphismes du graphe icosidodécaédrique est un groupe d'ordre 120.

Le polynôme caractéristique de la matrice d'adjacence du graphe icosidodécaédrique est : .

Voir aussi

Liens internes

Liens externes

Références

    Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.