Processus de Kiefer
Le processus de Kiefer est un mouvement brownien à deux paramÚtres introduit par le mathématicien américain Jack Kiefer afin de voir le processus empirique comme un processus gaussien à deux paramÚtres. En particulier, en fixant le paramÚtre le processus de Kiefer est un pont brownien et en fixant le paramÚtre il devient un mouvement brownien.
Définition et propriétés
Soit un processus de Wiener (ou mouvement brownien) à deux paramÚtres. Un processus de Kiefer est défini par
Le processus de Kiefer vérifie les propriétés suivantes :
- Si on fixe le paramĂštre , le processus de Kiefer est un mouvement brownien. Formellement, est un mouvement brownien ;
- Si on fixe le paramĂštre , le processus de Kiefer est un pont brownien. Formellement, est un pont brownien. ;
- est une suite de ponts browniens indépendants ;
- et la fonction de covariance de est donnée par
Approximation forte du processus empirique
Jack Kiefer fut le premier mathĂ©maticien Ă considĂ©rer le processus empirique comme un processus Ă deux paramĂštres et que celui-ci devait par consĂ©quent ĂȘtre approchĂ© par un processus gaussien bidimensionnel. Il prouve notamment que si est une suite de variables i.i.d. de loi uniforme sur , il existe un processus de Kiefer vĂ©rifiant presque-sĂ»rement[1]
Les mathématiciens Komlós, Tusnådy et Major approchent fortement le processus empirique uniforme avec le processus de Kiefer avec une meilleure borne[2] - [3]. Précisément, si est une suite de variables i.i.d. de loi uniforme sur alors il existe un processus de Kiefer tel que pour tout , presque-sûrement [4]
oĂč sont des constantes universelles positives. Ce qui entraĂźne d'aprĂšs le lemme de Borel-Cantelli : presque-sĂ»rement,
Références
- (en) Jack Kiefer, « Skorohod Embedding of Multivariate RV's and the sample DF », Z. Wahrscheinlichkeitstheorie verw. Gebiete, vol. 24,â , p. 1-35
- (en) J. Komlos, P. Major et G. Tusnady, « An approximation of partial sums of independent RVâ-s, and the sample DF. I », Z. Wahrscheinlichkeitstheorie verw, no Gebiete 32,â , p. 211-226 (lire en ligne)
- (en) J. Komlos, P. Major et G. Tusnady, « An approximation of partial sums of independent RV'-s and the sample DF. II », Z. Wahrscheinlichkeitstheorie verw, no Gebiete 34,â , p. 33-58 (lire en ligne)
- (en) M. Csörgo et P. Révész, Strong approximations in probability and statistics