AccueilđŸ‡«đŸ‡·Chercher

Processus gaussien

En théorie des probabilités et en statistiques, un processus gaussien est un processus stochastique (une collection de variables aléatoires avec un index temporel ou spatial) de telle sorte que chaque collection finie de ces variables aléatoires suit une loi normale multidimensionnelle ; c'est-à-dire que chaque combinaison linéaire est normalement distribuée. La distribution d'un processus gaussien est la loi jointe de toutes ces variables aléatoires. Ses réalisations sont donc des fonctions avec un domaine continu.

Un processus stochastique X sur un ensemble fini de sites S est dit gaussien si, pour toute partie finie A⊂S et toute suite rĂ©elle (a) sur A, ∑s∈A as X(s) est une variable gaussienne.

Posant mA et ÎŁA la moyenne et la covariance de X sur A, si ÎŁA est inversible, alors XA = (Xs,s∈A) admet pour densitĂ© (ou vraisemblance) par rapport Ă  la mesure de Lebesgue sur ℝcard(A) :

Voir aussi

Processus de Gauss

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplĂ©mentaires peuvent s’appliquer aux fichiers multimĂ©dias.