Accueil🇫🇷Chercher

Logarithme intégral

En mathématiques, le logarithme intégral li est une fonction spéciale définie en tout nombre réel strictement positif x ≠ 1 par l'intégrale :

Logarithme intégral.

ln désigne le logarithme népérien.

La fonction n'est pas définie en t = 1, et l'intégrale pour x > 1 doit être interprétée comme la valeur principale de Cauchy :

Équivalent à l'infini

Quand x tend vers +∞, on a l'équivalence c'est-à-dire que

D'après le théorème des nombres premiers, la fonction de compte des nombres premiers π(x) est équivalente à x/ln(x), donc à li(x), qui en fournit par ailleurs une meilleure approximation.

Propriétés

La fonction li est liée à l'exponentielle intégrale Ei par la relation li(x) = Ei (ln (x)) pour tout nombre réel strictement positif x ≠ 1. Ceci mène aux développements en séries de li(x), comme : γ ≈ 0,577 est la constante d'Euler-Mascheroni.

On en déduit le développement au voisinage de 1 du logarithme intégral : .

La fonction li a une seule racine, elle se trouve en x ≈ 1,451 ; ce nombre est connu comme étant la constante de Ramanujan-Soldner.

Fonction d'écart logarithmique intégrale

La fonction d'écart logarithmique intégrale est une fonction spéciale Li(x) très similaire à la fonction logarithme intégral, définie de la façon suivante :

Une valeur approchée de li(2) est 1,045 163 8[1] - [2], alors que Li(2) = 0.

On peut montrer à l'aide d'intégrations par parties successives que, pour tout entier n, on a le développement asymptotique suivant à l'infini de Li (donc aussi de li) :

Pour n = 0, on retrouve l'équivalent ci-dessus.

Signification en théorie des nombres

Comme dit dans la section « Équivalent », le théorème des nombres premiers établit que:

exprime la quantité de nombres premiers inférieurs à .

Avec l'hypothèse de Riemann, l'estimation suivante plus forte est possible[3] :

Pour des petits , , mais on sait, indépendamment de l'hypothèse de Riemann, que cette différence change de signe un nombre infini de fois quand augmente. La première occurrence devrait survenir[4] au voisinage de 1.4×10316.

Notes et références

  1. Johann Georg von Soldner, Théorie et tables d'une nouvelle fonction transcendante, 1809, p. 48.
  2. Pour plus de décimales, voir par exemple « li(2) », sur WolframAlpha ou la suite A069284 de l'OEIS.
  3. Abramowitz and Stegun, p. 230, 5.1.20
  4. Il est démontré que des changements de signes se produisent avant cette valeur ; aucune démonstration rigoureuse de ce qu'il ne s'en produit pas avant 10316 (ni même avant 1020) n'existe, mais on a des estimations heuristiques montrant que cela est très peu probable ((en) Douglas Stoll et Patrick Demichel, « The impact of complex zeros on for », Mathematics of Computation, vol. 80, no 276, , p. 2381–2394 (DOI 10.1090/S0025-5718-2011-02477-4 Accès libre, MR 2813366)).

Voir aussi

Articles connexes

Bibliographie

(en) Milton Abramowitz et Irene Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables [détail de l’édition] (lire en ligne).

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.