Accueil🇫🇷Chercher

Homéomorphisme

En topologie, un homéomorphisme est une application bijective continue, d'un espace topologique dans un autre, dont la bijection réciproque est continue. Dans ce cas, les deux espaces topologiques sont dits homéomorphes.

Une tasse est homéomorphe à un tore.

La notion d'homéomorphisme est la bonne notion pour dire que deux espaces topologiques sont « le même » vu différemment. C'est la raison pour laquelle les homéomorphismes sont les isomorphismes de la catégorie des espaces topologiques.

Théorème

Soit et des espaces topologiques, une application bijective de sur . Les conditions suivantes sont équivalentes :

  • et sont continues ;
  • pour qu'une partie de soit ouverte, il faut et il suffit que son image dans soit ouverte[1].

Propriétés

  • Une bijection continue est un homéomorphisme si et seulement si elle est ouverte ou fermée (elle est alors les deux).
  • Soient K un espace topologique compact, E un espace topologique séparé, et f : K → E une bijection continue. Alors f est un homéomorphisme. En particulier, E est un compact.En effet, tout fermé F de K est compact ; comme E est séparé, l'image de F par f est compacte, a fortiori fermée dans E. Donc, f est une bijection continue fermée, i.e. un homéomorphisme par le point précédent.
  • Une bijection continue n'est pas toujours un homéomorphisme (voir l'article Comparaison de topologies). Par exemple, l'application
    est une bijection continue mais sa réciproque n'est pas continue en (1, 0). En fait, il n'existe aucun homéomorphisme entre le cercle S1 et une partie de (par des arguments de connexité ou de simple connexité).

Définitions associées

Une application f : XY est un homéomorphisme local (en) si tout point de X appartient à un ouvert V tel que f(V) soit ouvert dans Y et que f donne, par restriction, un homéomorphisme de V sur f(V). Une telle application est continue et ouverte.

Exemples
  • Tout revêtement est un homéomorphisme local.
  • Pour tout ouvert X de Y, l'inclusion XY est un homéomorphisme local.
  • Toute composée XZ d'homéomorphismes locaux XY et YZ est un homéomorphisme local.
  • Toute réunion disjointeiIXiY d'homéomorphismes locaux XiY est un homéomorphisme local.
  • Tout quotient X/~ → Y d'un homéomorphisme local XY par une relation d'équivalence ~ compatible et ouverte est un homéomorphisme local. (Cf. la « droite réelle avec un point double ».)
  • Tout difféomorphisme local d'une variété dans une autre est un homéomorphisme local.

Une propriété topologique est une propriété qui est invariante par homéomorphismes.

Exemples

Référence

  1. Jacques Dixmier, Topologie générale, Paris, PUF, , 164 p. (ISBN 2-13-036647-3, OCLC 417477300), paragraphes 2.5 p. 31 et 4.2.16 p. 55.

Voir aussi

Articles connexes

Lien externe

Homéomorphisme du plan sur un carré : animation sur GeoGebra accompagnée d'un exercice

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.