Accueil🇫🇷Chercher

Graphe triacontaédrique rhombique

Le graphe triacontaédrique rhombique est, en théorie des graphes, un graphe possédant 32 sommets et 60 arêtes.

Graphe triacontaédrique rhombique
Nombre de sommets 32
Nombre d'arêtes 60
Distribution des degrés 3 (20 sommets)
5 (12 sommets)
Rayon 6
Diamètre 6
Maille 4
Automorphismes 120
Nombre chromatique 2
Indice chromatique 5
Propriétés Planaire

Propriétés

Propriétés générales

Il existe treize graphes correspondant aux squelettes des treize solides de Catalan, les polyèdres duaux des solides d'Archimède. Le graphe triacontaédrique rhombique est l'un d'eux. Les douze autres sont le graphe hexacontaédrique trapézoïdal, le graphe icositétraédrique trapézoïdal, le graphe hexakioctaédrique, le graphe hexaki-icosaédrique, le graphe hexacontaédrique pentagonal, le graphe icositétraédrique pentagonal, le graphe pentakidodécaédrique, le graphe dodécaédrique rhombique, le graphe triakioctaédrique, le graphe tétrakihexaédrique, le graphe triaki-icosaédrique et le graphe triakitétraédrique.

Le diamètre du graphe triacontaédrique rhombique, l'excentricité maximale de ses sommets, est 6, son rayon, l'excentricité minimale de ses sommets, est 6 et sa maille, la longueur de son plus court cycle, est 4. Il s'agit d'un graphe 3-sommet-connexe et d'un graphe 3-arête-connexe, c'est-à-dire qu'il est connexe et que pour le rendre déconnecté il faut le priver au minimum de 3 sommets ou de 3 arêtes.

Coloration

Le nombre chromatique du graphe triacontaédrique rhombique est 2. C'est-à-dire qu'il est possible de le colorer avec 2 couleurs de telle façon que deux sommets reliés par une arête soient toujours de couleurs différentes. Ce nombre est minimal.

L'indice chromatique du graphe triacontaédrique rhombique est 5. Il existe donc une 5-coloration des arêtes du graphe telle que deux arêtes incidentes à un même sommet soient toujours de couleurs différentes. Ce nombre est minimal.

Propriétés algébriques

Le groupe d'automorphismes du graphe triacontaédrique rhombique est d'ordre 120.

Le polynôme caractéristique de la matrice d'adjacence du graphe triacontaédrique rhombique est : .

Voir aussi

Liens internes

Liens externes

Références

    Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.