Accueil🇫🇷Chercher

Graphe hexacontaédrique trapézoïdal

Le graphe hexacontaédrique trapézoïdal est, en théorie des graphes, un graphe possédant 62 sommets et 120 arêtes. C'est le squelette du hexacontaèdre trapézoïdal, un polyèdre à 60 faces.

Graphe hexacontaédrique trapézoïdal
Nombre de sommets 62
Nombre d'arêtes 120
Distribution des degrés 3 (20 sommets)
4 (30 sommets)
5 (12 sommets)
Rayon 6
Diamètre 8
Maille 4
Automorphismes 120
Nombre chromatique 2
Indice chromatique 5
Propriétés Planaire

Propriétés

Propriétés générales

Il existe treize graphes correspondant aux squelettes des treize solides de Catalan, les polyèdres duaux des solides d'Archimède. Le graphe hexacontaédrique trapézoïdal est l'un d'eux. Les douze autres sont le graphe icositétraédrique trapézoïdal, le graphe hexakioctaédrique, le graphe hexaki-icosaédrique, le graphe hexacontaédrique pentagonal, le graphe icositétraédrique pentagonal, le graphe pentakidodécaédrique, le graphe dodécaédrique rhombique, le graphe triacontaédrique rhombique, le graphe triakioctaédrique, le graphe tétrakihexaédrique, le graphe triaki-icosaédrique et le graphe triakitétraédrique.

Le diamètre du graphe hexacontaédrique trapézoïdal, l'excentricité maximale de ses sommets, est 8, son rayon, l'excentricité minimale de ses sommets, est 6 et sa maille, la longueur de son plus court cycle, est 4. Il s'agit d'un graphe 3-sommet-connexe et d'un graphe 3-arête-connexe, c'est-à-dire qu'il est connexe et que pour le rendre déconnecté il faut le priver au minimum de 3 sommets ou de 3 arêtes.

Coloration

Le nombre chromatique du graphe hexacontaédrique trapézoïdal est 2. C'est-à-dire qu'il est possible de le colorer avec 2 couleurs de telle façon que deux sommets reliés par une arête soient toujours de couleurs différentes. Ce nombre est minimal.

L'indice chromatique du graphe hexacontaédrique trapézoïdal est 5. Il existe donc une 5-coloration des arêtes du graphe telle que deux arêtes incidentes à un même sommet soient toujours de couleurs différentes. Ce nombre est minimal.

Propriétés algébriques

Le groupe d'automorphismes du graphe hexacontaédrique trapézoïdal est d'ordre 120.

Le polynôme caractéristique de la matrice d'adjacence du graphe hexacontaédrique trapézoïdal est : .

Voir aussi

Liens internes

Liens externes

Références

    Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.