Accueil🇫🇷Chercher

Dryas récent

Le Dryas rĂ©cent, ou Dryas III, est une pĂ©riode de 1 200 ans allant de 12 850 Ă  11 650 ans avant le prĂ©sent (calibrĂ© en annĂ©es calendaires[1]), soit une pĂ©riode de 10 900 Ă  9 700 av. J.-C[1]. Elle reprĂ©sente l'ultime oscillation froide de la dernière pĂ©riode glaciaire et prĂ©cède la pĂ©riode chaude actuelle de l'Holocène. C'est la troisième, la dernière et la plus longue des oscillations froides connues sous le nom de Dryas (16 500 Ă  11 700 ans AP) que connait le Tardiglaciaire, pĂ©riode de lent rĂ©chauffement irrĂ©gulier qui suit le dernier maximum glaciaire après 18 000 AP. Le Dryas rĂ©cent s'insère ainsi entre deux pĂ©riodes plus chaudes : l'interstade Bølling-Allerød et le dĂ©but de l'Holocène.

Le Dryas rĂ©cent voit le retour des glaciers sur les terres septentrionales ou montagneuses[2] - [3], du fait d'une importante chute de la tempĂ©rature moyenne de 7 °C dans l'hĂ©misphère Nord et d'une chute maximale de 10 °C au Groenland. Il est enregistrĂ© dans les sĂ©diments, les carottes glaciaires et les dĂ©pĂ´ts de pollens fossiles des tourbières. Au sein de ces dernières, il est marquĂ© par l'abondance de pollen de Dryas octopetala qui lui a donnĂ© son nom. La fin du Dryas rĂ©cent est marquĂ©e par une Ă©lĂ©vation brutale de la tempĂ©rature moyenne de l'hĂ©misphère nord d'environ 7 °C en 50 Ă  60 ans, cette hausse atteignant 10 Ă  12 °C en des durĂ©es encore infĂ©rieures localement.

Courbes de températures reconstituées à partir de carottes de glace prélevées sur les forages de Vostok (tracé bleu) et d'Epica (tracé noir) en Antarctique et du forage GRIP (tracé rouge), dans le Groenland, qui montrent l'importance de l'évènement du Dryas récent dans l'hémisphère nord.

Étymologie, synonymes

Le Dryas doit son nom à la Dryas octopetala, plante de la toundra et de la flore alpine, car le pollen fossile de cette plante est particulièrement abondant dans les couches de sédiments ou de tourbe qui se sont accumulées à cette époque.

En Irlande, la période est connue en tant que « stade Nahanagan », alors qu'au Royaume-Uni elle est appelée « stade de Loch Lomond ». Elle est corrélée avec le « premier Stade Glaciaire Groenlandais » ou GS-1 (l'interstade Bølling/Allerød qui précède étant corrélé avec le « premier Interstade Groenlandais » ou GI-1)[4].

Causes

Ce refroidissement pourrait ĂŞtre dĂ», conjointement ou non[N 1], Ă  :

  • une modification des courants de l'ocĂ©an Atlantique qui auraient cessĂ© de convoyer de l'eau rĂ©chauffĂ©e de l'Ă©quateur vers l'Europe. L'hypothèse est appuyĂ©e par de nombreux indices, en particulier par la dĂ©bâcle du lac Agassiz, grand lac de fonte de l'inlandsis canadien ; mais elle est en partie contredite par les taux reconstituĂ©s de 14C dans l’atmosphère : le taux de 14C a augmentĂ© au dĂ©but du Dryas rĂ©cent, mais a diminuĂ© bien avant le rĂ©chauffement de l'Atlantique-Nord ;
  • une diminution de l'activitĂ© solaire, qui selon certains chercheurs s'accompagne d'une diminution des taches solaires et se traduit par une production plus importante de 14C dans l’atmosphère et par suite dans les sĂ©diments. Un autre isotope considĂ©rĂ© comme marqueur climatique est produit dans l'atmosphère dans ce cas, le 10Be (BĂ©ryllium 10) ; il a effectivement Ă©tĂ© retrouvĂ© dans les carottes de glaces, en quantitĂ©s anormalement irrĂ©gulières au cours de la dernière pĂ©riode glaciaire[5]. Une modĂ©lisation laisse penser qu'une modification des courants aurait aussi eu lieu ; la diminution de l'activitĂ© solaire ne pourrait expliquer Ă  elle seule le refroidissement qui a affectĂ© l'hĂ©misphère nord pendant le Dryas[6].
  • des Ă©missions intenses d'aĂ©rosols et de cendres volcaniques[7].
  • un impacteur (hypothèse de l'impact cosmique du Dryas rĂ©cent).
  • une Ă©jection de masse coronale[8] qui aurait atteint la Terre[9], dĂ©rĂ©glĂ© le climat de manière abrupte et causĂ© l'extinction de masse de cette pĂ©riode.
  • La disparition de la mĂ©gafaune, grande productrice de mĂ©thane qui est un gaz Ă  effet de serre.
  • L'impact d'une mĂ©tĂ©orite au Groenland qui forma le cratère de Hiawatha de 31 km de diamètre il y a ~12 000 ans[10].

Fin

La fin du Dryas récent est caractérisée par une hausse brutale de la température annuelle moyenne de l'hémisphère nord d'environ 7 °C en 50 à 60 ans, cette hausse atteignant 10 à 12 °C en des durées encore inférieures localement (notamment au Groenland)[11] - [12] - [13] - [14], mais également en Europe centrale[15]. Il s'agit en fait d'un événement de Dansgaard-Oeschger particulièrement violent. Les origines de ce type d'événements (réchauffement brutal suivi d'un refroidissement lent) sont encore mal connues. La globalité ou non du refroidissement dû au Dryas récent (et donc du réchauffement consécutif) est encore débattue par la communauté scientifique[16].

Dans les arts

Cette période de glaciation brutale a servi en partie de modèle scientifique au film Le Jour d'après (2004).

Notes et références

Notes

  1. Parmi les effets conjoints secondaires on peut remarquer l'arrivée des êtres humains en Amérique du Nord et du Sud et la disparition concomitante de la mégafaune. Celle-ci produisant de grandes quantités de méthane, sa disparition aurait entraîné une diminution du méthane atmosphérique et donc de l'effet de serre dans certaines proportions. Voir, à ce propos, le débat sur cette question : (en) « Methane and megafauna » (une correspondance entre Edward J. Brook (Department of Geosciences, Oregon State University), Jeffrey P. Severinghaus (Scripps Institution of Oceanography, University of California, San Diego) et Felisa A. Smith (University of New Mexico)), Nature Geoscience, vol. 4,‎ (lire en ligne [PDF], consulté le ).

Références

  1. [Rasmussen et al. 2006] (en) S. O. Rasmussen, K. K. Andersen, A. M. Svensson, J. P. Steffensen, B. M. Vinther, H. B. Clausen et M.-L. Siggaard-Andersen Johnsen, « A new Greenland ice core chronology for the last glacial termination », Journal of Geophysical Research, vol. 111, no D6,‎ , p. D06102 (ISSN 0148-0227, DOI 10.1029/2005JD006079, Bibcode 2006JGRD..111.6102R, lire en ligne [PDF] sur epic.awi.de).
  2. [Ballantyne 1989] (en) Colin K. Ballantyne, « The Loch Lomond readvance on the isle of Skye, Scotland glacier reconstruction and palaeoclimatic implications » [« Nouvelle avancée des glaciers pendant le stade Loch Lomond sur l'île de Skye, en Écosse : reconstitution des glaciers et implications paléoclimatiques »], Journal of Quaternary Science, vol. 4, no 2,‎ , p. 95-108 (ISSN 0267-8179, lire en ligne [sur researchgate.net], consulté en ).
  3. [Benn & Ballantyne 2005] (en) Douglas I. Benn et Colin K. Ballantyne, « Palaeoclimatic reconstruction from Loch Lomond Readvance glaciers in the West Drumochter Hills, Scotland », Journal of Quaternary Science, vol. 20,‎ , p. 577-592 (ISSN 0267-8179, résumé).
  4. [Delpech 2020] Françoise Delpech, « Biostratigraphie et datations de la fin des temps glaciaires. Nouvelles visites des faunes de quelques gisements du Grand Sud-ouest de la France », Paléo, vol. 30, no 2,‎ , p. 92-106 (lire en ligne [sur journals.openedition.org], consulté en ), paragr. 34.
  5. [Finkel & Nishiizumi 1997] (en) R.C. Finkel et K. Nishiizumi, « Beryllium 10 concentrations in the Greenland ice sheet project 2 ice core from 3– 40 ka », Journal of Geophysical Research, vol. 102, no 26,‎ , p. 699-706 (lire en ligne [sur agupubs.onlinelibrary.wiley.com], consulté en ).
  6. « Pourquoi un soudain retour du froid à la fin de la dernière période glaciaire ? (lien brisé) »(Archive.org • Wikiwix • Archive.is • Google • Que faire ?), bulletin de l'EAWAG, n° 58.
  7. [Gong & Morton 1987] D. Long et A. C. Morton, « An ash fall within the Loch Lomond Stadial » [« Une pluie de cendres pendant le stade du Loch Lomond »], Journal of Quaternary Science, vol. 2,‎ , p. 97-101 (ISSN 0267-8179, lire en ligne [sur researchgate.net], consulté en ).
  8. [Howard 2006] Russell A. Howard, « A Historical Perspective on Coronal Mass Ejections » [« Une perspective historique sur les éjections de masse coronale »], E.O. Hulburt Center for Space Research, Naval Research Laboratory, Washington DC 20375,‎ (lire en ligne [PDF] sur solwww.oma.be, consulté en ).
  9. [Peratt et al. 2007] Anthony L. Peratt, John McGovern, Alfred H. Qoyawayma, Marinus A. Van der Sluijs et Mathias G. Peratt, « Characteristics for the Occurrence of a High-Current Z-Pinch Aurora as Recorded in Antiquity. Part II: Directionality and Source », IEEE Transactions on Plasma Science, vol. 35,‎ , p. 778–807 (ISSN 0093-3813, DOI 10.1109/TPS.2007.902630, lire en ligne [PDF] sur plasmauniverse.info, consulté en ).
  10. [Howard 2018] Brian Clark Howard, « City-size impact crater found under Greenland ice », National Geographic,‎ (lire en ligne [sur nationalgeographic.com], consulté en ).
  11. [Steffensen et al. 2008] (en) Jørgen Peder Steffensen, Katrine K. Andersen, Matthias Bigler et Henrik B. Clausen, « High-Resolution Greenland Ice Core Data Show Abrupt Climate Change Happens in Few Years », Science, vol. 321, no 5889,‎ , p. 680–684 (ISSN 0036-8075 et 1095-9203, PMID 18566247, DOI 10.1126/science.1157707, lire en ligne [sur researchgate.net], consulté en ).
  12. [Cheng et al. 2015] (en) Tianyu Chen, Laura F. Robinson, Andrea Burke et John Southon, « Synchronous centennial abrupt events in the ocean and atmosphere during the last deglaciation », Science, vol. 349, no 6255,‎ , p. 1537–1541 (ISSN 0036-8075 et 1095-9203, PMID 26404835, DOI 10.1126/science.aac6159, lire en ligne [sur science.sciencemag.org], consulté en ).
  13. [Affolter 'et al. 2019] (en) Stéphane Affolter, Anamaria Häuselmann, Dominik Fleitmann et R. Lawrence Edwards, « Central Europe temperature constrained by speleothem fluid inclusion water isotopes over the past 14,000 years », Science Advances, vol. 5, no 6,‎ , p. eaav3809 (ISSN 2375-2548, DOI 10.1126/sciadv.aav3809, lire en ligne [sur advances.sciencemag.org], consulté en ).
  14. [Parrenin et al. 2013] (en) F. Parrenin, V. Masson-Delmotte, P. Köhler et D. Raynaud, « Synchronous Change of Atmospheric CO2 and Antarctic Temperature During the Last Deglacial Warming », Science, vol. 339, no 6123,‎ , p. 1060–1063 (ISSN 0036-8075 et 1095-9203, PMID 23449589, DOI 10.1126/science.1226368, lire en ligne [sur researchgate.net], consulté en ).
  15. (en) « The Younger Dryas », sur ncdc.noaa.gov (consulté en ).
  16. [Lowell & Kelly 2008] (en) Thomas V. Lowell et Meredith A. Kelly, « Was the Younger Dryas Global? », Science, vol. 321, no 5887,‎ , p. 348–349 (ISSN 0036-8075 et 1095-9203, PMID 18635782, DOI 10.1126/science.1160148, lire en ligne [PDF] sur citeseerx.ist.psu.edu, consulté en ).

Voir aussi

Articles connexes

Bibliographie

  • [Broecker 1999] (en) W. S. Broecker, « What If the Conveyor Were to Shut Down? Reflections on a Possible Outcome of the Great Global Experiment », GSA Today, vol. 9, no 1,‎ , p. 1-7 (lire en ligne [sur faculty.washington.edu], consultĂ© en ).
  • [Calvin 1998] (en) William C. Calvin, « The great climate flip-flop », adapted from Atlantic Monthly, vol. 281, n° 1, p. 47-64, sur williamcalvin.com, (consultĂ© en ).
  • [Cheng et al. 2020] (en) Hai Cheng, Haiwei Zhang, Christoph Spötl, Jonathan Baker, Ashish Sinha, Hanying Li, Miguel BartolomĂ©, Ana Moreno, Gayatri Kathayat, Jingyao Zhao et al., « Timing and structure of the Younger Dryas event and its underlying climate dynamics », PNAS, vol. 117, no 38,‎ , p. 23408-23417 (lire en ligne [sur pnas.org], consultĂ© en ).
  • [Friedrich et al. 1999] (en) Michael Friedrich, Marco Kromer, Marco Spurk, Jutta Hofmann et Klaus Felix Kaiser, « Paleo-environment and radiocarbon calibration as derived from Lateglacial/Early Holocene tree-ring chronologies », Quaternary International, vol. 61, no 1,‎ , p. 27-39 (lire en ligne [sur academia.edu], consultĂ© en ).
  • [Tarasov & Peltier 2005] (en) Lev Tarasov et W.R. Peltier, « Arctic freshwater forcing of the Younger Dryas cold reversal » (Letter), Nature, vol. 435,‎ , p. 662-665 (lire en ligne [sur nature.com], consultĂ© en ).

Liens externes

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.