Accueil🇫🇷Chercher

Digital Radio Mondiale

Digital Radio Mondiale (DRM) est une norme de radiodiffusion numĂ©rique (voir radio numĂ©rique) pour les ondes courtes, moyennes et longues (frĂ©quences en dessous de 30 MHz). Il a Ă©tĂ© conçu par un consortium de diffuseurs, de constructeurs d'Ă©metteurs/rĂ©cepteurs et de centres de recherche.

Le consortium existe depuis 1998, et le lancement officiel du système DRM a eu lieu en à Genève. Les spécifications du consortium ont été converties en norme européenne par l'ETSI (référence : ES 201 980) et sont reconnues par l'Union internationale des télécommunications (UIT) comme moyen de radiodiffusion numérique pour ces gammes d'ondes. Radio France internationale, Télédiffusion de France, Deutsche Welle, Voice of America, Telefunken (nouveau : Transradio) et Thomcast (devenu ensuite Thales Broadcast & Multimedia, puis Thomson Grass Valley, puis Grass Valley et enfin Thomson Broadcast) ont pris part à la formation du consortium DRM. Le Syndicat national des radios libres est venu renforcer le consortium, ainsi que Littoral AM, la première radio régionale à avoir choisi de diffuser ses programmes en DRM, qui en est membre depuis 2005.

Principe

L'idée de base pour la création de ce système numérique est que les ondes courtes, moyennes et longues offrent en analogique un certain nombre d'avantages par rapport aux autres systèmes de radiodiffusion (satellite, VHF terrestre, etc.) :

  • Couverture possible Ă  très large Ă©chelle (nationale, internationale) avec un seul Ă©metteur. Aucun Ă©quipement intermĂ©diaire n'est a priori prĂ©vu entre l'Ă©metteur et le rĂ©cepteur ce qui reprĂ©sente une sĂ©curitĂ©.
  • Un rĂ©cepteur onde courte est compact, lĂ©ger et simple. Il ne nĂ©cessite par exemple pas de devoir pointer une antenne Ă  un endroit prĂ©cis comme dans le cas du satellite.

Par contre la diffusion numérique offre toutes sortes d'avantages par rapport à la diffusion analogique traditionnelle en AM :

  • QualitĂ© de son amĂ©liorĂ©e. Plus de parasites et de bruits de fond. Comparable dans certains cas Ă  de la radiodiffusion FM.
  • Identification des stations reçues. Recherche de station amĂ©liorĂ©e. Il n'est plus nĂ©cessaire de consulter des longues listes pour savoir quelle chaĂ®ne est captĂ©e.
  • Ajout de donnĂ©es associĂ©es au programme : texte dĂ©filant, images.
  • Pour une mĂŞme zone de couverture, un Ă©metteur DRM a besoin d'environ 4 fois moins de puissance qu'un Ă©metteur AM. Ceci reprĂ©sente une Ă©conomie non nĂ©gligeable d'Ă©nergie et une diminution des rayonnements Ă  proximitĂ© de l'Ă©metteur quand on sait que les puissances utilisĂ©es sont souvent très Ă©levĂ©es (souvent des centaines de kilowatts).

Depuis le lancement officiel, le nombre de stations émettant en DRM ne cesse d'augmenter et celles-ci peuvent souvent être captées dans toute l'Europe.

La réception de programmes émettant en DRM implique forcément l'utilisation d'un nouveau récepteur. Certains passionnés modifient des récepteurs AM traditionnels en les modifient et en les couplant à un ordinateur qui se charge du décodage grâce à un logiciel. Cependant, des récepteurs commerciaux sont désormais disponibles et la tendance est au récepteur multistandard accueillant d'autres normes numériques (DAB/DMB, MP3, etc.) et les standards analogiques AM et FM.

Technique du système

Codage de source

Les dĂ©bits de donnĂ©e utiles atteints par DRM vont de 8 kbit/seconde Ă  20 kbit/seconde pour un canal de radiodiffusion standard (10 kHz de largeur de bande) et peuvent mĂŞme aller jusqu'Ă  72 kbit/s en couplant plusieurs canaux. Le dĂ©bit dĂ©pend aussi de plusieurs autres paramètres comme le niveau de robustesse souhaitĂ© (correction d'erreur), la puissance et les conditions de propagation. Ainsi plusieurs possibilitĂ©s existent dans DRM pour coder le signal audio, ce qu'on appelle le codage de source :

  • MPEG-4 AAC (Advanced Audio Coding) qui est un codage perceptuel adaptĂ© Ă  la voix et la musique comme MPEG-1/2 Layer 3 (mp3).
  • MPEG-4 CELP qui est un codage prĂ©vu pour la voix uniquement (vocodeur) mais possède une grande rĂ©sistance aux erreurs et nĂ©cessite un faible dĂ©bit de donnĂ©es.
  • MPEG-4 HVXC qui est Ă©galement un codage pour la voix mais qui nĂ©cessite un dĂ©bit de donnĂ©e encore plus faible.
  • SBR (Spectral Bandwidth Replication) qui est en fait une extension aux codeurs prĂ©cĂ©dents et qui permet d'augmenter la largeur de bande et reproduire ainsi les frĂ©quences aigĂĽes lorsque les dĂ©bits de donnĂ©es sont faibles.
  • StĂ©rĂ©o ParamĂ©trique (PS) qui est une extension de SBR pour reproduire un signal stĂ©rĂ©o.

Le diffuseur peut ainsi choisir le mode qu'il souhaite en fonction de ses besoins. Le mode le plus couramment utilisé actuellement est le AAC+SBR qui permet une reproduction avec une qualité proche de la diffusion FM. Celui-ci nécessite cependant un débit de donnée suffisant (au moins 17 kbit/s).

Largeur de bande

La diffusion peut être effectuée sur différentes largeurs de bande :

  • kHz ou 10 kHz qui sont les largeurs de bande standards des canaux de radiodiffusions pour les ondes courtes, ondes moyennes et ondes longues (< 30 MHz). En choisissant ces largeurs de bande on reste ainsi en accord avec la planification des frĂ©quences effectuĂ©es dans ces bandes de frĂ©quence.
  • 4,5 kHz ou kHz qui sont des demi-canaux et qui sont prĂ©vus dans le cas oĂą le diffuseur souhaite faire de la diffusion en simulcast sur le mĂŞme Ă©metteur, c’est-Ă -dire Ă©mettre simultanĂ©ment en analogique AM et en numĂ©rique DRM.
  • 18 kHz ou 20 kHz qui correspond Ă  coupler deux canaux standards si la planification des frĂ©quences le permet. Cela permet d'offrir un service de meilleure qualitĂ©.

Modulation

Pour la transmission, la modulation utilisée par la DRM est une constellation QAM (Quadrature Amplitude Modulation) avec un codage d'erreur qui peut être variable. L'ensemble du canal radio est codé selon le procédé OFDM (Orthogonal Frequency Division Multiplexing) qui permet d'obtenir une excellente robustesse du signal par rapport aux échos destructifs de propagation. Le principe consiste à obtenir une importante densité spectrale en répartissant le flux total du signal numérique sur de nombreuses sous-porteuses modulées individuellement en QAM. D'autre part les phases de ces sous-porteuses sont orthogonales entre elles dans le but de renforcer la diversité du signal par rapport aux échos de propagation.

Le choix des paramètres de transmission dépend de la robustesse souhaitée et des conditions de propagation des ondes radio. La transmission est en effet affectée par le bruit, les perturbations, les trajets d'onde multiples et l'effet Doppler.

Il est ainsi possible de choisir entre plusieurs niveaux de codage d'erreur et plusieurs constellations : 64-QAM, 16-QAM et 4-QAM. La modulation OFDM possède également des paramètres qui doivent être ajustés en fonction des conditions de propagation. Il s'agit en gros de l'espacement entre les porteuses qui déterminera la robustesse face à l'effet Doppler (décalages en fréquence) et l'intervalle de garde qui déterminera la robustesse face aux trajets d'ondes multiples (décalages en temps). Le consortium a donc fixé quatre modes possibles fixant les paramètres OFDM. Les voici en commençant par le canal aux conditions de propagation les plus favorables :

  • A : canal de transmission de type Gaussien avec peu de trajets multiples et peu d'effet Doppler. Ce mode est adaptĂ© Ă  une diffusion locale ou rĂ©gionale.
  • B : canal de transmission avec comme consĂ©quence un Ă©talement en temps (dĂ» Ă  des trajets multiples avec de grandes diffĂ©rences de temps de trajet). Ce mode est adaptĂ© Ă  une diffusion Ă  moyenne Ă©chelle, il est frĂ©quemment utilisĂ©.
  • C : comme le mode B mais avec un effet Doppler plus Ă©levĂ© (dĂ» en majeure partie aux changements rapides de trajets d'ondes). Ce mode est adaptĂ© Ă  une diffusion longue distance.
  • D : comme le mode B mais avec un Ă©talement en temps et un effet Doppler très important. Cette situation se produit dans certains cas, lors de propagation Ă  très longue distance, de l'hĂ©misphère Nord Ă  l'hĂ©misphère Sud par exemple.

Le compromis entre tous ces paramètres se situe entre robustesse par rapport aux conditions de propagation et débit de données utile disponible pour le service.

Ce tableau présente quelques valeurs en fonction des modes de protection. Plus l'espacement entre porteuses est grand, plus le système est résistant à l'effet Doppler. Plus la durée de l'intervalle de garde est grande, plus le système est résistant aux trajets multiples des ondes.

Mode Espacement entre porteuses (Hz) Nombre de porteuses selon la bande passante du canal Durée d'un symbole (ms) Intervalle de garde (ms) Nb symboles/trame
kHz 10 kHz 18 kHz 20 kHz
A 41,6620422841246026,662,6615
B 46,8818220636641026,665,3315
C 68,18*138*28020,005,3320
D 107,14*88*17816,667,3324

Entrelacement en temps (time interleaving)

Un autre mécanisme est en place pour pallier les pertes de signal profondes (deep fading) dues aux conditions de propagation ou perturbations transitoires. C'est l'entrelacement en temps (time interleaving) qui consiste à mélanger, brasser sur un certain temps les données de telle manière qu'une perte de signal soit répartie en peu d'erreurs sur une longue durée plutôt qu'en beaucoup d'erreurs sur une courte durée. En effet, les mécanismes de correction d'erreur sont plus à même de corriger des erreurs dispersées plutôt qu'une longue suite d'erreurs qui se suivent (une disparition soudaine du signal). DRM spécifie donc 2 temps d'interleaving possible : 400 millisecondes ou 2 secondes. À noter que plus le temps d'interleaving est long plus le récepteur mettra de temps à recevoir le signal lorsque l'on change de fréquence.

Canaux logiques

En fait, certaines composantes du système ont besoin d'être plus fortement protégées que d'autres pour assurer la transmission. Pour cela, le système DRM effectue un multiplexage de différents canaux en un seul avant la transmission. Chaque canal a la possibilité d'avoir une robustesse différente grâce à une constellation (QAM-16, QAM-64, ...) et un codage d'erreur différent (par contre, le mode de transmission OFDM est le même pour tous ces canaux).

Ces canaux sont :

  • MSC (Main Service Channel): canal principal de service. C'est celui qui transporte le service Ă  proprement parler, soit les donnĂ©es audio et les donnĂ©es associĂ©es (textes, et images). Son dĂ©bit est donc Ă©levĂ©.
  • SDC (Service Description Channel): canal de description du service. Ce canal contient des informations complĂ©mentaires concernant les services (comme la langue, les changements, l'heure, etc) et permet ainsi le dĂ©codage des diffĂ©rents flux MPEG ou Data.
  • FAC (Fast Access Channel): canal d'accès « rapide ». Celui-ci transporte les informations minimum concernant la modulation utilisĂ©e ainsi que les types des diffĂ©rents services (radio). Il permet au rĂ©cepteur de se paramĂ©trer correctement pour dĂ©moduler le signal et dĂ©coder le service identifiĂ© grâce Ă  un code unique attribuĂ© au diffuseur. C'est donc le premier canal qui est dĂ©codĂ© par le rĂ©cepteur, son dĂ©bit de donnĂ©es est faible. Il doit ĂŞtre robuste par rapport aux deux autres.
  • GĂ©nĂ©rateur de porteuse. Ce n'est pas un canal Ă  proprement parler mais un mĂ©canisme qui consiste Ă  fixer certaines porteuses OFDM, c’est-Ă -dire ne pas les moduler et les laisser constantes. Certaines sont dĂ©finitivement fixes et d'autres sont fixĂ©es Ă  intervalles rĂ©gulier suivant un motif prĂ©dĂ©fini. Ce mĂ©canisme permet au rĂ©cepteur, lorsqu'il trouve un signal DRM, de rapidement rĂ©gler prĂ©cisĂ©ment sa frĂ©quence et de se synchroniser au signal de l'Ă©metteur.

Codage d'erreur

Le codage d'erreur peut ĂŞtre plus ou moins robuste.

Ce tableau montre les dĂ©bits utiles disponibles (en kbit par seconde) en fonction de la classe de protection avec des modes de transmission OFDM A ou B, des modulations de porteuses du canal principal diffĂ©rentes de 16 ou 64 QAM et des largeurs de bande de 9 ou 10 kHz :

Classe de protection A (kHz) B (kHz) B (10 kHz) C (10 kHz) D (10 kHz)
16-QAM 64-QAM 16-QAM 64-QAM 16-QAM 64-QAM 16-QAM 64-QAM
0 7,6 19,6 8,7 17,4 6,8 13,7 4,5 9,1
1 10,2 23,5 11,6 20,9 9,1 16,4 6,0 10,9
2 - 27,8 - 24,7 - 19,4 - 12,9
3 - 30,8 - 27,4 - 21,5 - 14,3

DRM+

Tandis que la norme DRM est conçue pour les bandes de radiodiffusion infĂ©rieures Ă  30 MHz, le consortium DRM a votĂ© en un projet d'extension du système aux bandes VHF jusqu'Ă  120 MHz. DRM+ sera le nom de cette nouvelle technologie. Les procĂ©dures de dĂ©veloppement, de tests, d'homologation et de configuration sont prĂ©vues pour le crĂ©neau 2007 Ă  2009. Une bande passante de canal plus large est utilisĂ©e, ce qui permettra aux stations de radio de diffuser des flux audionumĂ©riques plus Ă©levĂ©s et donc de bien meilleure qualitĂ©. Une bande passante de 50 kHz en DRM+ autorisera un programme audionumĂ©rique presque comparable Ă  la qualitĂ© d'un CD audio (pour rappel les CD audio sont Ă©chantillonnĂ©s Ă  44,1 kHz avec une quantification sur 16 bits).

TĂ©lĂ©vision mobile : Un canal DRM+ de 100 kHz pourra avoir une capacitĂ© suffisante pour diffuser une voie vidĂ©o : il serait ainsi possible de transmettre un canal vidĂ©o mobile en DRM+ sans faire appel aux technologies DMB ou DVB-H.

Le , DRM+ est devenue une norme officielle de diffusion lors de la publication par l'ETSI des spécifications techniques. Le document porte la référence ETSI ES 201 980 v3.1.1. Il s'agit effectivement d'une nouvelle version de toute la spécification DRM, comprenant un mode additionnel qui permet le fonctionnement en fréquence dans la tranche de 30 MHz à 174 MHz.

Conclusion

Contrairement à de la diffusion analogique AM, la diffusion numérique DRM offre un grand nombre de degrés de libertés au diffuseur pour le codage du son et la transmission. Cela implique donc qu'il définisse précisément ses besoins et sa zone de couverture. Ceci reste transparent pour l'auditeur car le récepteur se règle automatiquement.

Fabricants d'Ă©metteurs

  • Transradio, Allemagne - Emetteurs et solutions DRM
  • Nautel, Canada - Emetteurs et solutions DRM
  • Thomson Broadcast, France - Emetteurs TV/Radio et Solutions DRM

Voir aussi

Articles connexes

Liens externes

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.