Accueil🇫🇷Chercher

Construction de Cayley–Dickson

En mathématiques, la construction de Cayley–Dickson, nommée d'après Arthur Cayley et Leonard Eugene Dickson, fournit une suite d'algèbres sur le corps des réels, chacune ayant le double de la dimension de sa prédécesseure, connues comme les algèbres de Cayley–Dickson[1]. Les nombres complexes, les quaternions ou les octonions en sont des exemples.

La construction de Cayley–Dickson définit la nouvelle algèbre comme le produit cartésien de l'algèbre de départ avec elle-même, muni d'une multiplication distincte de la multiplication composante par composante et d'une involution appelée conjugaison. Au fur et à mesure que cette construction est appliquée, les symétries du corps des réels disparaissent : d'abord le caractère ordonné avec les nombres complexes, puis la commutativité avec les quaternions, l'associativité avec les octonions, et l'alternativité avec les sédénions.

Propriétés des algèbres de Cayley–Dickson
Algèbre Dimension Ordonné Propriétés de la multiplication Diviseurs de zéro
non triviaux
Commutativité Associativité Alternativité Associativité
des puissances
RĂ©els 1OuiOuiOuiOuiOui Non
Complexes 2 NonOuiOuiOuiOui Non
Quaternions 4 Non NonOuiOuiOui Non
Octonions 8 Non Non NonOuiOui Non
Sédénions 16 Non Non Non NonOuiOui
≥ 32

Notes et références

  1. (en) John Baez, « The octonions », Bulletin of the American Mathematical Society, vol. 39, no 2,‎ , p. 145–205 (ISSN 0273-0979 et 1088-9485, DOI 10.1090/S0273-0979-01-00934-X, lire en ligne, consulté le )
Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.