Accueil🇫🇷Chercher

Cahiers de Ramanujan

Les cahiers de Ramanujan sont quatre recueils de manuscrits de Srinivasa Ramanujan, mathématicien indien et membre du Trinity College de Cambridge, où il a noté ses découvertes mathématiques depuis le début de sa carrière en Inde ; le quatrième, un ensemble épars redécouvert en 1976, est appelé le cahier perdu de Ramanujan.

Histoire

Ă€ partir de 1908 (il a alors 21 ans), Srinivasa Ramanujan, ayant Ă©chouĂ© Ă  ses examens, n'essaie plus de suivre un cursus conventionnel, mais continue des recherches personnelles en mathĂ©matiques, tout en vivant dans une grande pauvretĂ© matĂ©rielle ; Ă  cette Ă©poque, faute de papier, il effectue ses calculs et ses raisonnements de tĂŞte ou sur une ardoise, ne notant que les rĂ©sultats dĂ©finitifs sur un cahier ; il conservera cette mĂ©thode de travail toute sa vie[1], produisant ainsi trois cahiers[n 1] contenant au total 3 900 formules et thĂ©orèmes sans pratiquement aucune dĂ©monstration ; de plus, son isolement l'amène Ă  se construire un système de notations personnel, rendant difficilement dĂ©chiffrable son travail[2].

Le quatrième cahier n'est en fait qu'une liasse de feuillets en désordre, écrits durant la dernière année de sa vie (1919-1920) ; il était considéré comme perdu jusqu'à ce qu'il soit redécouvert par le mathématicien George Andrews en 1976, dans une boîte à effets personnels de George Neville Watson stockée à la bibliothèque Wren (en) du Trinity College de Cambridge. Il est constitué de 87 feuilles contenant plus de 600 formules ; cet ensemble est décrit comme le cahier perdu de Ramanujan (Ramanujan's lost notebook).

Une photocopie des trois cahiers a Ă©tĂ© publiĂ©e en deux volumes en 1957, par le Tata Institute, et une bien meilleure Ă©dition en couleur a Ă©tĂ© Ă©tablie en 2012. Les versions numĂ©risĂ©es des trois cahiers et du « cahier perdu Â» sont dĂ©sormais disponibles en ligne[3] - [4].

Ă€ partir de 1977 et pendant plus de vingt ans, Bruce Carl Berndt se consacre Ă  l'Ă©dition commentĂ©e des trois cahiers (appelĂ©s dĂ©sormais cahiers de Ramanujan), en cinq volumes totalisant plus de 1 800 pages[5]. En tout, les cahiers contiennent près de 3 900 Â« assertions »[n 2], le plus souvent sans aucune dĂ©monstration. Berndt et ses collaborateurs, notamment les mathĂ©maticiens George Andrews, Richard Askey et Robert Rankin, s'attèlent soit Ă  les dĂ©montrer, soit Ă  chercher des rĂ©fĂ©rences dans la littĂ©rature existante ; Berndt peut Ă©galement s'appuyer sur les notes que Watson et Wilson ont prises dans les annĂ©es 1930 pour leur projet abandonnĂ© d'Ă©dition. Entre 2005 et 2018, il publie une Ă©dition commentĂ©e, en cinq autres volumes, des rĂ©sultats du « cahier perdu »[7], en Ă©tant cette fois aidĂ© en particulier par Ken Ono, qui s'appuie sur certains de ces rĂ©sultats pour obtenir, en 2014, un ensemble spectaculaire de nouvelles formules algĂ©briques[8] - [5].

En 2003, Berndt a retracĂ© (en s'appuyant sur la correspondance des diffĂ©rents acteurs) les vicissitudes des cahiers. Le premier Ă©tait restĂ© en Angleterre en 1919 ; après la mort de Ramanujan, Hardy l'envoya Ă  l'universitĂ© de Madras, qui lui en fournit une copie manuscrite, suivie de l'envoi des deux autres cahiers, ainsi que de notes Ă©parses constituant le « cahier perdu Â», entre 1923 et 1925. Ă€ une date indĂ©terminĂ©e après 1935, les cahiers (mais non les autres documents) furent retournĂ©s Ă  Madras par George Neville Watson, qui avait commencĂ© Ă  les exploiter, mais s'en Ă©tait dĂ©sintĂ©ressĂ©[9].

Contenu du « cahier perdu »

Rankin a décrit ce dernier cahier en détail[10]. La majorité des formules concerne les q-séries et les fausses fonctions thêta, environ un tiers concerne les équations modulaires et les invariants modulaires singuliers, et le reste porte principalement sur les intégrales, les séries de Dirichlet, les congruences et les développements asymptotiques.

Bilan

Plusieurs milliers de résultats ont été proposés par Ramanujan dans ces cahiers ; ils ont été analysés et sont désormais tous démontrés (parfois à l'aide d'outils informatiques)[11] : très peu sont faux (le plus souvent à la suite d'erreurs de copie) et les deux tiers sont originaux[12] - [13]. Ramanujan ne disposant pas de certaines théories inconnues ou en cours de développement au début du vingtième siècle, comme la théorie analytique des nombres, et ignorant même des résultats fondamentaux de l'analyse complexe, comme le théorème des résidus[14] - [n 3], les méthodes qui lui ont permis de découvrir une telle quantité de formules et de théorèmes restent obscures[12] - [n 4].

Notes et références

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Ramanujan's lost notebook » (voir la liste des auteurs).

Notes

  1. Parfois mentionnés comme les « cahiers effilochés de Ramanujan » (Ramanujan' frayed notebooks) en raison de leur état d'usure.
  2. Le nombre exact n'est pas tout Ă  fait clair, d'une part Ă  cause de rĂ©pĂ©titions, d'autre part parce que certaines « formules Â» regroupent plusieurs rĂ©sultats similaires[6].
  3. Bien qu’il ait contribuĂ© par exemple au dĂ©veloppement de la mĂ©thode du cercle, son intuition l’a ainsi trompĂ© dans l’étude de la rĂ©partition des nombres premiers : « Ramanujan agissait comme si les zĂ©ros complexes de la fonction zĂŞta de Riemann n'existaient pas Â» (The Man who knew Infinity, p. 220).
  4. Certaines dĂ©clarations de Ramanujan, attribuant par exemple ces formules Ă  Namagiri Thayar, sa dĂ©esse tutĂ©laire[15], ont contribuĂ© Ă  entretenir le mystère. Si Hardy a insistĂ© pour qu'on ne voie lĂ  qu'une « extraordinaire puissance de manipulations formelles, de rapiditĂ© dans la formation et le rejet d'hypothèses, et d'intuition des relations cachĂ©es entre objets apparemment sans lien Â»[16], Ken Ono mentionne sa perplexitĂ© devant certaines prĂ©dictions de Ramanujan, confirmĂ©es rĂ©cemment par de pĂ©nibles calculs informatiques, et qui lui paraissent inaccessibles avec les outils dont Ramanujan disposait[17] - [18].

Références

  1. Kanigel 1991, p. 55-56.
  2. Kanigel 1991, p. 342.
  3. « Ramanujan, Published Papers, Unpublished Notebooks » (consulté le ).
  4. « Site du projet Janus » (consulté le ).
  5. Voir le détail des éditions dans l'article consacré à leur auteur.
  6. (en) Frontline (magazine), « Rediscovering Ramanujan », vol. 16, no 17, , une interview de Bruce Carl Berndt.
  7. (en) George Andrews et Bruce Carl Berndt, Ramanujan's Lost Notebook, Part 1, Springer, , 441 p. (ISBN 978-0-387-25529-3, lire en ligne), p. 1.
  8. (en) Michael J. Griffin, Ken Ono et S. Ole Warnaar, « A framework of Rogers–Ramanujan identities and their arithmetic properties » [« Un cadre pour les identités de Rogers-Ramanujan et leurs propriétés arithmétiques »], Duke Mathematical Journal,‎ (DOI 10.1215/00127094-3449994, arXiv 1401.7718).
  9. (en) Berndt, Bruce C., « An overview of Ramanujan's notebooks » [PDF], sur www.math.uiuc.edu/~berndt/articles/aachen.pdf, , p. 3.
  10. (en) Robert A. Rankin, « Ramanujan's manuscripts and notebooks. II », Bull. London Math. Soc., vol. 21, no 4,‎ , p. 351-365.
  11. Ce travail de vérification, s'étalant sur plus de 25 ans, et achevé pour l'essentiel en 1996, est en grande partie dû à Bruce Carl Berndt, avec la collaboration de plusieurs autres mathématiciens, dont les frères Jonathan et Peter Borwein.
  12. Édouard Thomas, « Les mystérieux carnets de Ramanujan enfin décryptés », Maths Société Express, Comité International des jeux mathématiques (www.cijm.org),‎ , p. 57 à 62.
  13. (en) Introduction au dernier volume de ces analyses, par Bruce Carl Berndt.
  14. (en) Godfrey Harold Hardy, « The Indian Mathematician Ramanujan », American Mathematical Monthly, vol. 44, no 3,‎ , p. 145 (lire en ligne)
  15. Kanigel 1991, p. 30.
  16. Hardy 1937, p. 149.
  17. Ono 2006, p. 649.
  18. Bleicher 2014, p. 55.

Voir aussi

Bibliographie

Liens externes

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.