Accueil🇫🇷Chercher

Électronique de puissance

L'électronique de puissance est une branche de l'électronique et de l'électrotechnique qui traite les puissances élevées et « les dispositifs qui permettent de convertir celles-ci sous une forme non électrique[1] » (convertisseurs[2]) et de les commuter, avec ou sans commande de cette puissance[3].

Un thyristor 100 ampères/800 volts en boĂ®tier Ă  vis et un thyristor 13 ampères/800 volts en boĂ®tier TO-220.

L'électronique de puissance comprend l'étude, la réalisation et la maintenance :

  • des composants Ă©lectroniques utilisĂ©s en forte puissance ;
  • des structures, de la commande et des applications des convertisseurs d’énergie.

Généralités

L'Ă©lectronique de puissance, ou plus correctement « Ă©lectronique de conversion d'Ă©nergie », a moins de 50 ans. Elle a connu un tel essor qu'aujourd'hui près de 15 % de l'Ă©nergie Ă©lectrique produite est convertie sous une forme ou une autre. Au cours de ces annĂ©es, la taille, le poids et le coĂ»t des convertisseurs n'ont fait que diminuer, en grande partie grâce aux progrès faits dans le domaine des interrupteurs Ă©lectroniques.

C'est une électronique de commutation : elle tire parti du fait qu'un interrupteur parfait fermé (résistance nulle, tension aux bornes nulle) ou ouvert (résistance infinie, courant traversant nul) ne dissipe aucune énergie, donc ne présente aucune perte. Lorsqu'il est associé à des éléments de filtrage passifs et purement réactifs (c'est-à-dire sans aucune résistance interne), il permet théoriquement de modifier la tension et/ou le courant sans perte, donc de réaliser une conversion de tension ou de courant en conservant l'énergie. Ce but est atteint en découpant la tension et/ou le courant à très haute fréquence (par rapport à la fréquence d'entrée ou de sortie du convertisseur) et en lissant le résultat obtenu pour en extraire la valeur moyenne. En pratique, on doit s'attendre à des pertes de l'ordre de 2 à 10 % dues à l'imperfection des éléments physiques qui le constituent. Ces pertes raisonnables justifient l'essor de ce type d'électronique dans les systèmes à haute puissance, puisqu'elles permettent une évacuation de la chaleur générée sans recourir à des moyens extrêmes et coûteux. Progressivement, l'électronique de puissance s'est imposée dans tous les domaines où les pertes doivent rester faibles pour limiter l'échauffement, comme dans les ordinateurs, et où le rendement doit être élevé pour préserver la source d'énergie, comme dans les systèmes alimentés par batteries (GSM, GPS, ordinateurs portables…).

Rappelons qu'un convertisseur de puissance de rendement unitaire (sans pertes) ne peut être constitué que d'interrupteurs idéaux et de dipôles purement réactifs donc sans la moindre résistance parasite : condensateurs et inductances. Les dipôles réactifs sont des éléments de stockage d'énergie dont la taille (et donc le coût) est inversement proportionnelle à la fréquence de fonctionnement.

En plus des applications traditionnelles de l'électronique de puissance comme la traction électrique et les entraînements industriels, il est apparu de nouveaux domaines d'application :

Les interrupteurs

Historique

C'est dans le domaine du redressement de forte puissance que se développent les premiers convertisseurs statiques destinés à remplacer les convertisseurs électromécaniques. Dans les années 1950, pour la traction électrique, on s'oriente vers la solution - transport en alternatif + motorisation en continu. Les convertisseurs statiques nécessaires sont réalisés à l'aide de redresseurs à vapeur de mercure (ignitrons) ayant la même fonctionnalité que les thyristors.

  • Les premières diodes de puissance au silicium apparaissent en 1956 et les thyristors en 1961. Dans les annĂ©es 1970, thyristors et diodes sont utilisĂ©s dans des dispositifs autocommutĂ©s comme les hacheurs et les onduleurs, les annĂ©es qui suivent voient le dĂ©veloppement de transistors bipolaires de puissance qui favorise le dĂ©veloppement d'une Ă©lectronique de conversion de faible et moyenne puissance.
  • Au dĂ©but des annĂ©es 1980, les dispositifs Ă  transistors poussent les dispositifs Ă  thyristors vers des puissances accrues : vers 1990, les GTO ne sont plus utilisĂ©s qu'en très fortes puissances ( > 1 MW) ou pour des tensions supĂ©rieures Ă  kV.
  • L'IGBT apparaĂ®t en 1985, d'abord dans le domaine des moyennes puissances (quelques dizaines de kilowatts), il supplante les transistors Darlington. Il devient dans les 10 ans qui suivent un composant utilisable en forte puissance.
  • L'avènement du thyristor IGCT (Integrated Gate Commutated Thyristor) vers 1997 dans le domaine des tensions supĂ©rieures Ă  kV risque d'entraĂ®ner Ă  moyen terme la disparition du thyristor GTO.
  • Dans le domaine des faibles puissances, du fait de sa rapiditĂ© et de la simplicitĂ© de sa commande, le transistor MOSFET de puissance supplante le transistor bipolaire. Grâce aux techniques d'intĂ©gration planar et l'essor du marchĂ© du portable (tĂ©lĂ©phone, ordinateur, lecteur CD, etc.) nĂ©cessitant une Ă©lectronique de conversion efficace et miniaturisĂ©e, il supplante mĂŞme les diodes dans des applications comme le redressement (redresseur synchrone).
  • Les composants Ă  base de carbure de silicium (SiC) apparaissent en 2002. Ceux Ă  base de diamant sont encore Ă  l'Ă©tude en 2004. Leurs fortes Ă©nergies d'ionisation permettent un blocage de tension plus Ă©levĂ©e et/ou des fonctionnements Ă  haute tempĂ©rature.
  • Le nitrure de gallium GaN fait ses premiers pas dans la production industrielle en 2011 avec des caractĂ©ristiques plus intĂ©ressantes que le SiC d'un point de vue coĂ»t, modularitĂ© d'utilisation et vitesse de commutation. Il n'y a pas encore de marchĂ© industriel concret utilisant cette technologie mais des tensions de 1600V et des temps de commutation extrĂŞmement faibles devraient en faire un composant de choix pour les marchĂ©s grands publics tels automobile, appareils de conforts en avionique et autres.

Les diodes

Elles sont Ă©quivalentes Ă  un clapet dans une installation hydraulique.

Deux paramètres sont à prendre en compte :

  • La tension maximale de blocage du composant, c’est-Ă -dire la tension au-delĂ  de laquelle se produit le claquage et donc la destruction de la diode.
  • L'intensitĂ© maximale du courant qui peut la traverser.

Les trois principaux défauts du composant sont :

  • sa tension de seuil : VS
  • Sa rĂ©sistance dynamique interne : RD
  • Sa capacitĂ© parasite : C.

Actuellement les diodes se déclinent en plusieurs catégories :

Les diodes silicium de puissance
de résistance dynamique RD faible. Elles sont utilisées dans le domaine des convertisseurs de forte puissance comme les onduleurs de traction. Elles sont réalisées en boîtier encapsulé. La jonction qui les constitue est de type PiN (P - Intrinsèque - N), ou PN-N+. L'introduction d'une zone très faiblement dopée permet d'obtenir une tension de blocage élevée.
Les diodes rapides
de capacité parasite C faible. Elles ont des temps de recouvrement de l'ordre de quelques dizaines de nanosecondes.
Les diodes Schottky
tension de seuil VS faible et C faible. Elles sont constituées d'une jonction métal - semi-conducteur. Par rapport aux diodes PiN, la tension de seuil est plus faible, mais la résistance est plus élevée (d'où une chute de tension qui dépend plus fortement du courant qui la traverse). Elles peuvent fonctionner à des fréquences très élevées mais la tension inverse maximale autorisée est plus faible. Pour toutes ces raisons, elles sont principalement utilisées dans les convertisseurs fonctionnant en TBT et à fréquence élevée : alimentations à découpage. En carbure de silicium (SiC), elles conjuguent C très faible et une tension de blocage plus élevée que les diodes Schottky classiques mais ces améliorations se font au détriment de l'augmentation de VS.

Les MOSFET de puissance

Ce sont des interrupteurs électroniques dont le blocage ou l'amorçage sont commandés par une tension (Ils se comportent comme des portes que l'on peut ouvrir ou fermer à volonté). Ce sont les plus utilisés dans le domaine des faibles et moyennes puissances (quelques kilowatts).

Leur domaine d’utilisation est limité à quelques centaines de volts, excepté le domaine des fréquences élevées pour lesquelles le MOSFET surclasse tous les autres composants.

Leur principal défaut est qu'à l'état passant ils se comportent comme des résistances (RDSon) de quelques dizaines de mΩ. Cette résistance est responsable des pertes en conduction. Le MOSFET peut aussi présenter des pertes de commutation lorsqu'il est utilisé comme interrupteur dans les alimentations à découpage. En effet, à chaque commutation, les capacités parasites présentes à ses bornes doivent être chargées ou déchargées entraînant des pertes en CV².

Les transistors bipolaires de puissance

Par rapport aux transistors MOS de puissance, ils nécessitent une commande plus compliquée et ont des performances dynamiques plus médiocres. Toutefois ils sont thermiquement plus stables et surtout, du fait d’une commande en courant, ils sont moins sensibles aux perturbations électromagnétiques.

Les IGBT

Le transistor MOS est rapide et facile à commander, mais les transistors bipolaires ont une meilleure tenue en tension et présentent une chute de tension à l’état passant plus faible pour des courants élevés. La volonté de cumuler ces deux avantages a donné naissance à des composants hybrides nommés IGBT.

Depuis les années 1990, ce sont les composants les plus utilisés pour réaliser des convertisseurs fonctionnant avec des tensions de quelques centaines de volts à quelques kilovolts et avec des courants de quelques dizaines d'ampères à quelques kiloampères.

Les thyristors

Composant fonctionnant grossièrement comme un clapet commandé par un « tire-suisse » :

  • Pour qu'il devienne passant il faut l'amorcer : il faut maintenir le courant de gâchette jusqu'Ă  ce que le courant principal atteigne le courant d’accrochage.
  • Au blocage il faut attendre une certaine durĂ©e le dĂ©samorçage (turn-off) pour que le thyristor puisse effectivement bloquer la tension inverse.

Pour ces raisons le thyristor est réservé à des applications concernant les très fortes tensions (> kilovolts) et les forts courants, où son coût inférieur compense ses limitations techniques. Par exemple les liaisons longues distances ou sous-marines par courant continu – haute tension (HVDC) sont presque toujours réalisées avec des thyristors.

Exemple de valeurs : thyristor 16 kV – 2 kA, frĂ©quence 300 Hz.

Commutation dure et commutation douce

La montée en fréquence des convertisseurs statiques entraîne une augmentation des pertes par commutation dans les interrupteurs. Ces pertes peuvent être réduites, mais surtout délocalisées par l’adjonction de circuit d’aide à la commutation (es) CALC ou snubber en anglais, et cela sans modifier le principe de fonctionnement du convertisseur.
Une autre possibilité consiste à modifier la nature des interrupteurs pour qu’ils réalisent une commutation spontanée, dite aussi commutation douce car les pertes sont nulles, mais aussi celle des convertisseurs qui doivent alors créer les conditions de commutations. Ces convertisseurs sont dits convertisseurs (quasi) résonants[4].

Deux types d’interrupteurs peuvent être utilisés, conduisant à deux types de commutations douces :

  • Interrupteur Ă  amorçage commandĂ© et blocage spontanĂ©, comme le thyristor. Le blocage est alors rĂ©alisĂ© au passage Ă  zĂ©ro du courant, nommĂ© ZCS (Zero Current Switching) en anglais.
  • Interrupteur Ă  blocage commandĂ© et amorçage spontanĂ©. L'amorçage est alors rĂ©alisĂ© au passage Ă  zĂ©ro de la tension ou ZVS (Zero Voltage Switching) en anglais.

Pour parvenir au passage à zéro de l’une des grandeurs il est nécessaire d’ajouter un circuit oscillant dans le montage, d’où leur nom de convertisseurs quasi résonants.

Quelques dispositifs

On distingue généralement quatre grandes fonctions de convertisseurs dans l'électronique de puissance :

  • continu → continu,
  • alternatif → continu et continu → alternatif
  • alternatif → alternatif (avec ou sans changement de frĂ©quence).

Mais en plus de ces dénominations purement fonctionnelles, des noms particuliers ont été donnés à certains convertisseurs.

Les différents dispositifs

Notes et références

  1. Richard Taillet, LoĂŻc Villain et Pascal Febvre, Dictionnaire de physique, Bruxelles, De Boeck, , p. 234.
  2. Électronique de puissance, sur techniques-ingenieur.fr du 10 février 2016, consulté le 21 août 2017
  3. Commission électrotechnique internationale, « Dispositifs électriques et magnétiques : Généralités », dans IEC 60050 Vocabulaire électrotechnique international, 1987/1994 (lire en ligne), p. 151-11-01.
  4. Jean-Paul Ferrieux et François Forest, Alimentations à découpage, convertisseurs à résonance, DUNOD, , chapitre 3

Voir aussi

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.