Accueil🇫🇷Chercher

Symétrisation de Steiner

En géométrie affine, la symétrisation de Steiner est une géométrie visant à remplacer une partie quelconque d'un espace affine par une partie admettant des propriétés de symétrie. Cette transformation a été utilisée pour démontrer certaines inégalités isopérimétriques.

Elle est nommée ainsi en l'honneur de Jakob Steiner.

Définition

Dans un espace affine, soit H un hyperplan et δ une direction non parallèle à H. Soit K une partie de l'espace affine. On définit alors le symétrisé de Steiner par :

pour toute droite D parallèle à δ :

  • si K ∩ D = ∅ alors
  • si K ∩ D ≠ ∅ alors est le segment porté par D, de milieu situé en H et de longueur, sur D, égale à celle de K ∩ D.

Conséquences

  • On peut montrer que la symétrisation de Steiner n'est pas continue pour la distance de Hausdorff.
  • Pour toute partie K,
  • La symétrisation de Steiner conserve le volume, et elle n'augmente pas le diamètre.
  • Elle conserve également la convexité.
  • Inégalité isodiamétrique de Bieberbach:

Quel que soit K compact dans un espace euclidien de dimension n, on a

où désigne le volume de la boule unité dans l'espace considéré.

Sources

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.