AccueilđŸ‡«đŸ‡·Chercher

Prime de risque

La prime de risque est un concept de finance qui désigne un supplément de rendement exigé par un investisseur afin de compenser un niveau de risque supérieur à la moyenne.

Concept

Ce phénomÚne trouve son origine dans l'aversion au risque consubstantielle aux investisseurs : ceux-ci tendent à préférer un gain faible avec une probabilité de paiement élevée à un gain élevé mais assorti d'une probabilité plus faible. La demande des actifs risqués est ainsi moins forte que celle adressée aux actifs à risque faible.

Les investisseurs exigent ainsi souvent, pour investir dans une entreprise (par l'achat d'actions ou de tout titre financier Ă©mis par des entreprises), que le rendement attendu soit supĂ©rieur Ă  celui d'un placement non risquĂ©, c'est-Ă -dire celui des emprunts d'État. Cette diffĂ©rence de taux, ce revenu supplĂ©mentaire espĂ©rĂ© exigĂ©, constitue la prime de risque. Le taux correspondant, qui est la somme du taux non risquĂ© et de la prime de risque, est le taux risquĂ©.

En période de grande euphorie (bulle spéculative), la prime de risque s'annule (neutralité au risque), voire devient négative (recherche du risque).

Sur les marchés connus, la prime de risque varie autour de 8 % à 10 %, et monte à 25 % sur les marchés avec grande incertitude. Sur les marchés "nouveaux" (nouveaux produits ou concepts), elle peut monter à 65 %.

Histoire

Des progrĂšs importants dans l'espĂ©rance de vie et son estimation ont lieu Ă  partir du milieu du XVIIIe siĂšcle, grĂące aux travaux des mathĂ©maticiens tournĂ©s vers les statistiques et les probabilitĂ©s, comme Daniel Bernoulli (1763), et son frĂšre Nicolas Bernoulli, prĂ©curseur des thĂ©ories financiĂšres des Jeux et de l'aversion au risque via le Paradoxe de Saint-PĂ©tersbourg, ou Leonhard Euler, qui a inventĂ© au mĂȘme moment le terme de "dĂ©mographie mathĂ©matique"[1].

Toutefois, la pertinence de ces concepts fait l'objet de diverses controverses de nos jours, sous l'effet de travaux de recherche liés à la finance comportementale.

DĂ©composition

La prime de risque globale d'un titre donnĂ© peut souvent ĂȘtre dĂ©composĂ©e afin de rendre compte du fait que certains facteurs de risque affectent toutes les entreprises d'une mĂȘme catĂ©gorie alors que certains autres Ă©lĂ©ments n'influenceront qu'une entreprise particuliĂšre. La prime de risque globale d'une entreprise A sera donc la somme d'une prime de risque de marchĂ© (applicable aux autres entreprises) et d'une prime de risque intrinsĂšque (reflĂ©tant uniquement le risque de l'entreprise A).

Exemples

  • Diverses sociĂ©tĂ©s de crĂ©dit proposent des prĂȘts oĂč il n'est pas nĂ©cessaire de justifier de l'utilisation de l'argent mis Ă  disposition. Le taux pratiquĂ© TEG est alors souvent Ă©levĂ© et atteint parfois 20 % ! Ces sociĂ©tĂ©s font en effet une marge trĂšs importante sur chaque crĂ©dit mais prennent le risque de ne pas ĂȘtre remboursĂ©es (surendettement par exemple). Par consĂ©quent, le surprofit gagnĂ© grĂące aux personnes qui remboursent leur crĂ©dit sert Ă  financer les pertes liĂ©es aux non-remboursements (rappelons que ces organismes ne crĂ©ent pas de la monnaie, ils l'achĂštent Ă  la BCE Ă  un certain taux et la revendent Ă  un taux plus Ă©levĂ© Ă  leurs clients).
  • Les crĂ©ateurs de Meetic ont pris Ă©normĂ©ment de risques, la rĂ©ussite actuelle n'Ă©tant pas du tout prĂ©visible. La prise de risque a Ă©tĂ© bien rĂ©munĂ©rĂ©e (par le profit et l'augmentation de valeur de l'entreprise). S'ils avaient Ă©chouĂ©, ils auraient eu une rĂ©munĂ©ration de - 100 % (c’est-Ă -dire la perte de tout le capital investi).

Nous pouvons faire le calcul de l'espĂ©rance mathĂ©matiques du gain suivant, oĂč reprĂ©sente le capital investi, 300% le gain assurĂ© si le pari est gagnĂ©, la probabilitĂ© que le projet rĂ©ussisse et la probabilitĂ© que le projet Ă©choue.

L'entreprise prend un risque, elle a donc une prime de risque qui est ici de 300 %.

Pour les puristes, car soit le projet réussit, soit il échoue (voir Daniel Bernoulli) ; pour simplifier la chose, nous n'envisageons pas de solution intermédiaire (comme un « petit succÚs »). Pour concrétiser la chose, nous pouvons supposer que (30 % de chance que le projet aboutisse sur un succÚs). Ainsi, l'espérance du gain est de , soit un gain espéré de 20 % (donc mathématiquement, il faut prendre ce risque puisqu'il est trÚs supérieur au taux non risqué).

Nota

Une méthode plus rudimentaire consiste à calculer une prime de risque "instantanée", et non pas prospective basée sur l'anticipation de revenus futurs. Elle a la forme d'une simple soustraction entre :

  • le « rendement bĂ©nĂ©ficiaire » (inverse du PER) sur les cours actuels des actions de l'indice boursier ;
  • et le taux actuel de marchĂ© des obligations d'État Ă  10 ans.

Malgré son cÎté assez peu significatif, elle est souvent utilisée dans la presse financiÚre pour simplifier le calcul et éviter les aléas de l'anticipation des gains.

Références

  1. "-Recherches générales sur la mortalité et la multiplication du genre humain" par Leonhard Euler

Voir aussi

Annexes

Liens externes

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplĂ©mentaires peuvent s’appliquer aux fichiers multimĂ©dias.