Noyau de Fejér
En mathématiques, et plus précisément en analyse fonctionnelle et harmonique, le noyau de Fejér est une suite de fonctions réelles 2π-périodiques permettant d'exprimer l'effet d'une somme de Cesàro sur une série de Fourier. Il tient son nom du mathématicien hongrois Lipót Fejér.
Définition
Le noyau de Fejér est la suite (Fn)n∈ℕ* de fonctions analytiques dont le terme de rang n, appelé noyau de Fejér d'ordre n, est la moyenne arithmétique des n premiers noyaux de Dirichlet :
Calcul
En développant la définition ci-dessus, les deux expressions classiques du noyau de Dirichlet donnent respectivement :
- si (donc, par continuité, Fn(x) = n si x est un multiple entier de 2π) ;
- .
Convolution
On obtient la somme de Fejér d'ordre n d'une fonction f (intégrable sur [–π, π] et 2π-périodique) en effectuant un produit de convolution de f par le noyau de Fejér.
Propriétés
Le noyau de Fejér est un noyau de sommabilité positif sur , c'est-à-dire que :
- ;
- ;
- .
La suite (Fn) est donc une approximation de l'unité de l'algèbre de Banach (munie de produit de convolution).