Masse au repos
La masse au repos[1] - [2] - col. 1''s.v.''masse_au_repos_3-0">[3], masse propre[1] - [2] ou encore masse invariantecol. 1''s.v.''masse_invariante_4-0">[4] (par opposition à la masse relative ou masse relativiste, dépendante du référentiel), usuellement notée , est la masse inerte d'un corps dans un référentiel inertiel où il est au repos, ou d'un système physique dans un référentiel inertiel où son centre d'inertie est au repos. Elle est principalement utilisée en relativité restreinte et en physique des particules.
Masse au repos
Dans tout référentiel inertiel, elle peut être calculée à partir de l'énergie totale de la particule et de sa quantité de mouvement par la relation suivante :
où est la vitesse de la lumière.
On obtient cette relation à partir de la norme du quadrivecteur énergie-impulsion d'une particule :
- .
Si la particule est au repos, son énergie au repos vaut donc :
- .
Masse relativiste
Ce concept vient de la théorie de la relativité restreinte qui a amené Albert Einstein à postuler l'équivalence entre la masse et l'énergie.
L'énergie d'une particule de masse au repos allant à la vitesse v est et sa masse relativiste est alors définie par .
Ce qui permet d'utiliser eV et ses multiples comme unité de mesure de l'énergie de la particule ainsi que eV/c² pour la masse.
Système de plusieurs particules
Le concept de masse invariante peut être généralisé pour un système de plusieurs particules. On ne considérera ici que des systèmes fermés pour des raisons de simplicité.
Cas général
Dans le cas général, on a la relation suivante :
- soit
où est la masse au repos totale du système, l'énergie totale du système et la quantité de mouvement totale du système. On remarquera que cette formule est exactement la même que pour une particule seule, à la seule différence qu'il faut prendre les données globales du système à la place des données particulières.
Il faut néanmoins noter que cette masse invariante globale n'est pas égale à la somme des masses invariantes des particules composant le système : en plus de ces masses individuelles, il faut ajouter la masse « apparente » correspondant à l'énergie cinétique interne du système (, c'est-à-dire la somme des énergies cinétiques des particules dans le référentiel du centre de masse du système global ; ) ainsi que la masse correspondant à l'énergie d'interaction entre les particules (, c'est-à-dire la somme des énergies d'interaction pour chaque paire de particules du système ; ). Les relations entre données individuelles ( et , et , et ) et globales ( et , et , et , et ) sont donc :
et surtout, ce qui nous intéresse ici :
Avec les données usuelles (les ou , les et les ), on a :
Cas particulier 1 : particules sans interaction
Si les interactions entre les particules sont nulles, ou si elles peuvent être négligées (c'est-à-dire que l'énergie d'interaction peut être négligée devant les énergies de masse et/ou cinétique interne), on a alors :
Cas particulier 2 : particules « presque immobiles »
Dans certains cas, l'énergie cinétique peut être négligée : cette approximation est valable dans le cas où l'énergie de masse et/ou l'énergie d'interaction sont grandes devant l'énergie cinétique interne des particules. Ce cas particulier est un cas d'école : c'est une approximation théorique qui en pratique n'existe pas. On a alors :
Cas particulier 3 : particules « presque immobiles » et sans interaction
Ce cas est le cas extrême, combinaison des deux précédents, où l'énergie d'interaction et l'énergie cinétique interne sont toutes les deux négligeables devant l'énergie de masse du système. Dans ce cas, la masse propre du système global est simplement la somme des masses propres des particules composant le système :
Dans un autre système de coordonnées
Dans le cas d'un système de deux particules sans masse dont les impulsions sont séparées par un angle , la masse invariante a pour expression simplifiée :
De même, en physique des collisionneurs, les grandeurs telles que la pseudorapidité ou l'angle azimutal , associées à l'impulsion transverse , sont souvent utilisées comme système de coordonnées dans les détecteurs. Dans l'hypothèse de particules sans masse ou relativistes ( ,) la masse invariante prend la forme :
Notes et références
- Bailly et Longo 2007, p. 59.
- Lachièze-Rey 1987, p. 26-30.
- col. 1''s.v.''masse_au_repos-3" class="mw-reference-text">Taillet, Villain et Febvre 2018, s.v.masse au repos, p. 457, col. 1.
- col. 1''s.v.''masse_invariante-4" class="mw-reference-text">Taillet, Villain et Febvre 2018, s.v.masse invariante, p. 456, col. 1.
Voir aussi
Bibliographie
- [Bailly et Longo 2007] F. Bailly et G. Longo, « Causalités et symétries dans les sciences de la nature : le continu et le discret mathématiques », dans J.-B. Joinet (dir.), Logique, dynamique et cognition (actes de la rencontre Logique mathématique, informatique et philosophie, organisée en à l'université Paris-I – Panthéon-Sorbonne), Paris, Éditions de la Sorbonne, coll. « Logique, langage, sciences, philosophie », , 1re éd., 1 vol., 237, fig., 24 cm (ISBN 978-2-85944-584-3, EAN 9782859445843, OCLC 470567051, BNF 41181626, DOI 10.4000/books.psorbonne.291, SUDOC 118040197, présentation en ligne, lire en ligne), 1re part., chap. 3, p. 51-97 (DOI 10.4000/books.psorbonne.301).
- [Lachièze-Rey 1987] M. Lachièze-Rey (préf. de H. Reeves), Connaissance du cosmos, Paris, A. Michel, coll. « Sciences d'aujourd'hui » (no 62), (réimpr. ), 1re éd., 1 vol., 231, 23 cm (ISBN 2-226-02867-6, EAN 9782226028679, OCLC 420139628, BNF 34963602, SUDOC 001306278, présentation en ligne, lire en ligne).
- [Taillet, Villain et Febvre 2018] R. Taillet, L. Villain et P. Febvre, Dictionnaire de physique, Louvain-la-Neuve, De Boeck Sup., hors coll., , 4e éd. (1re éd. ), 1 vol., X-956, ill. et fig., 24 cm (ISBN 978-2-8073-0744-5, EAN 9782807307445, OCLC 1022951339, SUDOC 224228161, présentation en ligne, lire en ligne).