Loi de Dagum
En théorie des probabilités et statistique, la loi de Dagum, ou loi à deux types de Dagum-Bernstein-Rafeh-Raja-Spencer, est une loi de probabilité continue à support [0,+∞[. Son nom est issu de Camilo Dagum qui l'introduisit dans une série d'articles dans les années 1970[1] - [2]. La loi de Dagum apparait dans plusieurs variantes de nouveaux modèles de revenus des ménages.
Loi de Dagum |
Densité de probabilité
|
|
|
|
Paramètres
|
paramètre de forme paramètre de forme paramètre d'échelle
|
Support
|
|
Densité de probabilité
|
|
Fonction de répartition
|
|
Espérance
|
|
Médiane
|
|
Mode
|
|
Variance
|
voir l'article.
|
Il existe également une loi de Dagum de type I à trois paramètres et une loi de Dagum de type II à quatre paramètres ; un résumé de ces types sont détaillés dans des ouvrages tels que (Kleiber, 2008[3]) ou (Kleiber, 2003[4]).
Si X suit une loi de Dagum, on notera .
Définition
La fonction de répartition de la loi de Dagum (de type I) est donnée par :
et où .
La densité de probabilité correspondante est donnée par
La loi de Dagum peut être obtenue à partir de la loi bêta généralisée de type II (elle-même généralisation de la loi bêta prime). Il y a également un lien entre la loi de Dagum et la loi de Burr :
- .
La fonction de répartition de la loi de Dagum (de type II) ajoute une masse à l'origine et suit une loi de Dagum de type I sur le reste du support :
Propriétés
La variance de la loi de Dagum est donnée par :
où Γ est la fonction Gamma.
Références
- Dagum, Camilo (1975); A model of income distribution and the conditions of existence of moments of finite order; Bulletin of the International Statistical Institute, 46 (Proceeding de la 40e session du ISI), 199-205.
- Dagum, Camilo (1977); A new model of personal income distribution: Specification and estimation; Économie Appliquée, 30, 413-437.
- Kleiber, Christian (2008) "A Guide to the Dagum Distributions" in Chotikapanich, Duangkamon (ed.) Modeling Income Distributions and Lorenz Curves (Economic Studies in Inequality, Social Exclusion and Well-Being), Chapter 6, Springer
- Kleiber, Christian and Samuel Kotz (2003) Statistical Size Distributions in Economics and Actuarial Sciences, Wiley
Liens externes
Cet article est issu de
wikipedia. Text licence:
CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.