Accueil🇫🇷Chercher

Espace collectivement normal

En mathématiques, un espace topologique X est dit collectivement normal[1] s'il vérifie la propriété de séparation suivante, strictement plus forte que la normalité[2] et plus faible que la paracompacité :

X est séparé[3] et pour toute famille discrète[4] (Fi)i∈I de fermés de X, il existe une famille (Ui)i∈I d'ouverts disjoints[5] telle que pour tout i, Fi ⊂ Ui.

Tout sous-espace Fσ — en particulier tout fermé — d'un espace collectivement normal est collectivement normal.

Tout espace monotonement normal — en particulier tout espace métrisable — est (héréditairement) collectivement normal. Un espace collectivement normal n'est pas nécessairement dénombrablement paracompact[6]. Cependant, un théorème de Robert Lee Moore établit que tout espace de Moore collectivement normal est métrisable.

Notes et références

  1. N. Bourbaki, Éléments de mathématique, livre III : Topologie générale [détail des éditions], p. IX.106], ex. 24, aperçu sur Google Livres.
  2. (en) R. H. Bing, « Metrization of topological spaces », Canad. J. Math., vol. 3,‎ , p. 175-186 (lire en ligne), Theorem 14.
  3. Compte tenu de la suite de la définition, il revient au même d'imposer seulement la condition T1 : cf. Espace collectivement séparé (en).
  4. Une famille (Fi)i∈I de parties de X est dite discrète si tout point de X possède un voisinage qui rencontre au plus un Fi (Bourbaki, op. cit.).
  5. La famille (Ui)i∈I peut alors même être choisie discrète elle aussi : (en) Jun-iti Nagata, Modern General Topology, Elsevier, , 3e éd., 521 p. (ISBN 978-0-08-093379-5, lire en ligne), p. 209.
  6. Nagata 1985, p. 214.
Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.