Accueil🇫🇷Chercher

Constante de De Bruijn-Newman

La constante de De Bruijn-Newman, notée Λ, est une constante mathématique définie par les zéros d'une certaine fonction H(λ,z), où λ est un paramètre réel et z est une variable complexe : H(λ,z) n'a que des zéros réels si et seulement si λ ≥ Λ.

Depuis 2020, il est démontré que 0 ≤ Λ ≤ 0,2.

La constante est intimement reliée à l'hypothèse de Riemann sur les zéros de la fonction zêta de Riemann. En bref, l'hypothèse de Riemann est équivalente à la conjecture suivante : Λ ≤ 0. Si l'hypothèse de Riemann est vraie, alors Λ = 0.

Expressions analytiques particulières de H

H(λ,z) est la transformée de Fourier de exp(λx2)Φ(x) :

est la fonction rapidement décroissante :

  • H a la représentation de Wiener-Hopf :
    • pour λ ≥ 0,
    • pour λ < 0,
avec et
A et B sont des constantes réelles.

Recherche et approximation de Λ

Majorant

Nicolaas Govert de Bruijn en 1950 a montré que Λ ≤ 1/2.

Cette borne supérieure n'a pas été améliorée jusqu'en 2008, quand Ki, Kim et Lee ont démontré que Λ < 1/2, rendant l'inégalité stricte[1].

En 2018, le 15e projet Polymath a démontré que 0 ≤ Λ ≤ 0,22[2]. En 2020, la borne supérieure a été réduite à 0,2 par Platt et Trudgian[3].

Minorant

Charles Michael Newman (en) a conjecturé que 0 ≤ Λ.

D'imposants calculs sur Λ ont été faits depuis 1987 et sont encore menés à l'heure actuelle :

Années Minorant de Λ
1987[4] –50
1990[5] –5
1992[6] –0,385
1994[7] −4,379 e–6
1993[8] −5,895 e–9
2000[9] −2,7 e–9
2011[10] −1,145 41 × 10−11
2018[11] - [12] 0

La démonstration en que 0 ≤ Λ confirme donc la conjecture de Newman.

Références

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « De Bruijn–Newman constant » (voir la liste des auteurs).
  1. (en) Haseo Ki, Young-One Kim et Jungseob Lee, « On the de Bruijn–Newman constant », Advances in Mathematics, vol. 222, no 1, , p. 281–306 (DOI 10.1016/j.aim.2009.04.003, MR MR2531375, lire en ligne).
  2. (en) D.H.J. Polymath, « Effective approximation of heat flow evolution of the Riemann ξ function, and a new upper bound for the de Bruijn-Newman constant », Research in the Mathematical Sciences, vol. 6, no 3, (DOI 10.1007/s40687-019-0193-1).
  3. Dave Platt et Tim Trudgian, « The Riemann hypothesis is true up to 3·1012 », Bulletin of the London Mathematical Society, vol. 53, no 3, , p. 792–797 (DOI 10.1112/blms.12460, arXiv 2004.09765, S2CID 234355998)(preprint)
  4. (en) George Csordas, T. S. Norfolk et Richard S. Varga, « A low bound for the de Bruijn-newman constant Λ », Numerische Mathematik, vol. 52, no 5, , p. 483–497 (DOI 10.1007/BF01400887).
  5. (en) Herman te Riele, A new lower bound for the de Bruijn-Newman constant, vol. 58, , 661–667 p. (DOI 10.1007/BF01385647), chap. 1.
  6. (en) T. S. Norfolk, A. Ruttan et Richard S. Varga, « A Lower Bound for the de Bruijn-Newman Constant Λ. II », dans Andrey Aleksandrovich Gonchar (en) (dir.) et Edward B. Saff (en) (dir.), Progress in Approximation Theory, New York, Springer, coll. « Springer Series in Computational Mathematics » (no 19), (DOI 10.1007/978-1-4612-2966-7_17), p. 403–418.
  7. (en) George Csordas, Wayne Smith et Richard S. Varga, « Lehmer pairs of zeros, the de Bruijn-Newman constant Λ, and the Riemann Hypothesis », Constructive Approximation (en), vol. 10, no 1, , p. 107–129 (DOI 10.1007/BF01205170).
  8. (en) George Csordas, Andrew Odlyzko, Wayne Smith et Richard S. Varga, « A new Lehmer pair of zeros and a new lower bound for the De Bruijn-Newman constant Λ », Electronic Transactions on Numerical Analysis, vol. 1, , p. 104–111 (lire en ligne).
  9. (en) Andrew Odlyzko, « An improved bound for the de Bruijn-Newman constant », Numerical Algorithms, vol. 25, , p. 293–303 (DOI 10.1023/A:1016677511798, lire en ligne).
  10. (en) Yannick Saouter, Xavier Gourdon et Patrick Demichel, « An improved lower bound for the de Bruijn–Newman constant », Mathematics of Computation, vol. 80, no 276, , p. 2281–2287 (DOI 10.1090/S0025-5718-2011-02472-5, MR 2813360).
  11. (en) Brad Rodgers et Terence Tao, « The De Bruijn–Newman constant is non-negative », (arXiv 1801.05914).
  12. (en) Terence Tao, « The De Bruijn-Newman constant is non-negative », blog de Terence Tao, .

Voir aussi

Article connexe

Lien externe

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.