Accueil🇫🇷Chercher

Complément orthogonal

En mathématiques, plus précisément en algèbre linéaire et en analyse fonctionnelle, le complément orthogonal W⊥ d'un sous-espace vectoriel W d'un espace préhilbertien V est l'ensemble des vecteurs de V qui sont orthogonaux à tout vecteur de W, c'est-à-dire

Le complément orthogonal est toujours un sous-espace vectoriel fermé. Pour un espace de Hilbert, d'après le théorème du supplémentaire orthogonal, le complément orthogonal du complément orthogonal de W est l'adhérence de W, soit

  • Exemple 1
    Exemple 1
  • Exemple 2. Calcul par la méthode gaussienne
    Exemple 2. Calcul par la méthode gaussienne

Espace de Banach

Il existe un analogue de cette notion pour un espace de Banach quelconque. On peut alors définir le complément orthogonal de W comme étant le sous-espace du dual topologique V' de V défini par

Il s'agit toujours d'un sous-espace fermé de V'. Il existe aussi une propriété analogue au double complément. W⊥⊥ est alors un sous-espace de V'' (qui n'est pas égal à V). Cependant, si V est un espace réflexif, c'est-à-dire si le morphisme naturel est un isomorphisme, on a :

C'est une conséquence du théorème de Hahn-Banach.

Références

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.