Chandelle standard
Une chandelle standard est un objet astronomique qui a une luminosité connue. Plusieurs méthodes importantes permettant de déterminer les distances en astronomie extragalactique et en cosmologie sont basées sur des chandelles standard.
En comparant la luminosité connue (ou sa grandeur logarithmique dérivée, la magnitude absolue) et la luminosité observée (ou sa magnitude apparente) d'une chandelle standard, il est possible de calculer sa distance à l'aide de la formule du module de distance :
oĂč est la distance exprimĂ©e en parsec, est la magnitude apparente et la magnitude absolue.
Nature des chandelles standard
Domaine optique
Dans le domaine optique, les chandelles standard principalement utilisées sont :
- les variables de type RR Lyrae, des géantes rouges utilisées essentiellement pour mesurer des distances dans la Voie lactée et les amas globulaires proches ;
- les céphéides, le choix préféré en astronomie extragalactique, permettant d'atteindre des distances jusqu'à 20 Mpc ;
- les supernovas de type Ia qui ont une magnitude absolue trÚs bien déterminée comme une fonction empirique de la forme de leur courbe de lumiÚre et qui sont trÚs utiles pour déterminer les distances à des échelles extragalactiques.
Rayons X
En astronomie galactique, les sursauteurs X (des explosions thermonuclĂ©aires Ă la surface d'une Ă©toile Ă neutrons, souvent dĂ©signĂ©s par l'anglais X-ray bursters) sont utilisĂ©s comme chandelles standard. Les observations des sursauts X montrent parfois un spectre des rayons X indiquant une extension du rayon de l'Ă©toile. Ainsi le flux de rayons X au maximum du rĂ©seau doit correspondre Ă la luminositĂ© d'Eddington, qui peut ĂȘtre calculĂ© une fois que la masse de l'Ă©toile Ă neutrons est connue (habituellement, on l'estime Ă 1,5 masse solaire). Cette mĂ©thode permet de dĂ©terminer la distance de certaines binaires de faible masse Ă©mettant des rayonnements X, qui sont peu lumineuses dans la lumiĂšre visible, rendant la mesure de leur distance trĂšs difficile.
Infrarouge
La luminosité infrarouge des étoiles basculant de la branche des géantes rouges vers la branche horizontale est relativement indépendante de leur masse et de leur métallicité, ce qui fait des étoiles du sommet de la branche des géantes rouges de potentielles chandelles standard, applicables aussi bien aux amas globulaires qu'aux galaxies de toutes sortes[1].
En 2019, cette méthode donne pour la constante de Hubble H0 une valeur intermédiaire entre celles déduites du fond diffus cosmologique et celles données par les supernovas de type Ia, mais avec une précision insuffisante. La mise en service du télescope spatial James-Webb devrait réduire suffisamment les incertitudes pour que les nouvelles mesures permettent de confirmer ou d'infirmer la tension sur H0[2].
Fiabilité
Le principal problĂšme soulevĂ© avec les chandelles standards est la question, rĂ©currente, de leur rĂ©el caractĂšre standard et donc de leur fiabilitĂ©. Par exemple, toutes les observations semblent indiquer que les supernovas de type Ia qui sont Ă une distance connues ont la mĂȘme luminositĂ© (corrigĂ©e par la forme de la courbe lumineuse). NĂ©anmoins, on ne sait pas pourquoi elles devraient avoir la mĂȘme luminositĂ© et la possibilitĂ© que les supernovas de type Ia distantes aient des propriĂ©tĂ©s diffĂ©rentes ne peut ĂȘtre exclue.
Cas des céphéides
Cette question n'est pas que philosophique, comme on peut le voir en étudiant l'histoire des mesures de distances utilisant les céphéides. Dans les années 1950, Walter Baade découvrit que les céphéides proches utilisées pour calibrer les chandelles standard étaient d'un type différent de celui utilisé pour mesurer les galaxies proches. Les céphéides proches faisaient partie des étoiles de population I qui sont beaucoup plus riches en métaux que les céphéides distantes, faisant partie de la population II. Cela eut comme conséquence que les étoiles distantes étaient plus lumineuses que ce qui était cru jusqu'alors et les distances admises des amas globulaires, des galaxies proches et le diamÚtre de la Voie lactée furent soudainement doublées.
Voir aussi
Notes et références
- (en) Jeremy R. Mould, Laura Ferrarese, Holland C. Ford, John Huchra et Robert C. Kennicutt, Jr., « A Database of Cepheid Distance Moduli and Tip of the Red Giant Branch, Globular Cluster Luminosity Function, Planetary Nebula Luminosity Function, and Surface Brightness Fluctuation Data Useful for Distance Determinations », The Astrophysical Journal Supplement Series, vol. 128, no 2,â , p. 431-459 (DOI 10.1086/313391, lire en ligne [PDF], consultĂ© le ).
- (en) Wendy L. Freedman, Barry F. Madore, Dylan Hatt, Taylor J. Hoyt, In Sung Jang et al., « The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch », The Astrophysical Journal, vol. 882, no 1,â , p. 34- (DOI 10.3847/1538-4357/ab2f73, lire en ligne , consultĂ© le ).