Tonalité pure
En psychoacoustique, une tonalité pure, ou encore son pur ou note pure (en anglais : pure tone) est un son avec une forme d'onde sinusoïdale ; c'est-à -dire une onde sinusoïdale de n'importe quelle fréquence, phase et amplitude[1]. En audiologie clinique, les tons purs sont utilisés pour l'audiométrie tonale (en) afin de caractériser les seuils d'audition à différentes fréquences.
Principe
Une onde sinusoïdale est caractérisée par sa fréquence (le nombre de cycles par seconde), son amplitude (la force de chaque cycle) et son déphasage (qui indique l'alignement temporel par rapport à un point de référence zéro). Une tonalité pure a la propriété - unique parmi les formes d'onde pouvant être représentées par des valeurs réelles - que sa forme d'onde n'est pas modifiée par les systèmes linéaires invariants dans le temps (en) ; c'est-à -dire que seule sa phase et son amplitude changent entre son entrée et sa sortie au sein d'un tel système.
Les ondes sinusoïdales et cosinusoïdales peuvent être utilisés comme matière première de base afin de construire des ondes plus complexes. Une tonalité pure de n'importe quelle fréquence et phase peut être décomposée en, ou construite depuis, une onde sinusoïdale et une onde cosinusoïdale de cette fréquence. Lorsque davantage d'ondes sinusoïdales se trouvant à des fréquences différentes sont combinées, la forme d'onde s'éloigne d'une forme sinusoïdale pour prendre une forme plus complexe.
La localisation du son est souvent plus difficile avec des tonalités pures qu'avec d'autres sons[2] - [3].
Rapport à la hauteur du son et aux autres sons
Des tonalités pures ont été utilisés par des physiciens du 19e siècle comme Georg Ohm et Hermann von Helmholtz pour soutenir des théories affirmant que l'oreille fonctionne d'une manière équivalente à une analyse fréquentielle de Fourier[4] - [5]. Dans la loi acoustique d'Ohm (en), élaborée plus tard par Helmholtz, les sons musicaux sont perçus comme un ensemble de sons purs. La perception de la hauteur dépend de la fréquence du son le plus important, et les phases des composantes individuelles sont ignorés. Cette théorie a souvent été accusée de créer une confusion entre la hauteur, la fréquence et les tonalités pures[6].
Contrairement aux sons musicaux qui sont composés de la somme d'un certain nombre de composantes sinusoïdales liées harmoniquement, les sons purs ne contiennent qu'une seule forme d'onde sinusoïdale. Lorsqu'ils sont présentés séparément et lorsque leur fréquence se rapporte à une certaine plage, les tonalités pures donnent lieu à un perception de hauteur unique, qui peut être caractérisée par sa fréquence. Dans cette situation, la phase instantanée de la tonalité pure varie linéairement avec le temps.
Si une tonalité pure donne lieu à une perception constante, de façon stationnaire, on peut conclure que sa phase n'influence pas cette perception. Cependant, lorsque plusieurs tonalités pures sont présentés à la fois, comme dans les sons musicaux, leur phase relative joue un rôle dans le perception résultante. Dans une telle situation, la hauteur perçue n'est pas déterminée par la fréquence d'une composante individuelle, mais par la relation de fréquence entre ces composantes (voir fondamentale manquante).
Notes et références
- (en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Pure tone » (voir la liste des auteurs).
- ANSI S1.1-1994 Terminologie Acoustique (en)
- Stanley Smith Stevens and Edwin B. Newman, « The localization of actual sources of sound », The American Journal of Psychology, vol. 48, no 2,‎ , p. 297–306 (DOI 10.2307/1415748, JSTOR 1415748)
- Hartmann, « Localization of sound in rooms », The Journal of the Acoustical Society of America, vol. 74, no 5,‎ , p. 1380–1391 (PMID 6643850, DOI 10.1121/1.390163, Bibcode 1983ASAJ...74.1380H)
- Hermann L. F. von Helmholtz et Alexander J. Ellis, On the sensations of tone as a physiological basis for the theory of music, London, UK, Longmans, Green, and Co., (lire en ligne)
- Ohm, « Ueber die Definition des Tones, nebst daran geknupfter Theorie der Sirene und ahnlicher tonbildenden Vorrichtungen », Poggendor's Annalen der Physik und Chemie, vol. 59,‎ , p. 513–565
- W. Dixon Ward, Foundations of Modern Auditory Theory, vol. 1, Academic Press, , « Musical Perception », p. 438