Accueil🇫🇷Chercher

SSD

En informatique, un SSD (de l'anglais solid-state drive), voire disque SSD[1], disque électronique[1], disque statique à semi-conducteurs[2] ou plus simplement disque à semi-conducteurs[1] au Québec, est un matériel informatique permettant le stockage de données sur de la mémoire flash. En Français, l'utilisation commune du terme « disque SSD » en France et « disque à semi-conducteurs » au Québec, constituent toutes les deux un abus de langage, puisque le mot « disque » n'existe pas dans l'Anglais « solid-state drive ». Le terme « disque » est abusivement emprunté des périphériques de précédentes génération, les disques durs, alors que le mot anglais « drive », signifiant « lecteur de stockage », est lui absent de chacune des traductions.

Un SSD de 2,5 pouces (6,35 cm).

Description

Le terme anglais solid-state signifie que ce matériel est constitué de mémoires à semi-conducteurs à l'état solide, par opposition à la technologie plus ancienne des disques durs, pour lesquels les données sont écrites sur un support magnétique en rotation rapide.

Caractéristiques

SSD de 120 Go de marque Corsair fixĂ© sur un adaptateur 3,5 pouces (8,89 cm) pour une utilisation dans une tour informatique.

N'ayant aucune pièce mécanique en mouvement, un SSD est matériellement plus résistant qu'un disque dur ; en effet, les plateaux de ces derniers sont de plus en plus souvent en verre depuis 2003[3] (quoique encore très souvent en alliages d'aluminium), mais surtout, du fait que cette technologie implique l'interaction mécanique entre éléments de stockage (plateaux) et éléments d'accès (têtes de lecture/écriture), des chocs même légers peuvent entraîner des égratignures de la surface magnétique, ou une détérioration des éléments d'accès, donc des pertes de données voire une panne définitive. A contrario, les SSD sont dépourvus d'éléments mobiles, ce qui leur confère une résistance aux chocs et aux vibrations bien supérieure. Les SSD surclassent par ailleurs les disques durs au niveau des performances (débit, latence négligeable, consommation électrique).

Néanmoins, les SSD ont aussi des inconvénients par rapport aux disques durs :

  • les puces de mĂ©moire flash ont un nombre limitĂ© de cycles d'Ă©criture, ce qui fait que l'ensemble de l'unitĂ© a une capacitĂ© limitĂ©e en termes de volume total de donnĂ©es Ă©crites (la lecture n'est pas affectĂ©e par ce problème). Les disques durs (bien que pouvant tomber en panne Ă  tout moment) n'ont pas cette limitation a priori : si le substrat magnĂ©tique est de bonne qualitĂ© il peut ĂŞtre rĂ©Ă©crit pratiquement Ă  l'infini. MĂŞme si l'Ă©volution de la technologie tend Ă  rĂ©duire l'impact concret de cet inconvĂ©nient dans le cadre d'une utilisation conventionnelle (pour les modèles commercialisĂ©s après 2015 ; on peut considĂ©rer que l'obsolescence technologique sera atteinte bien avant la limite des cycles d'Ă©criture), cela fait que les disques durs restent mieux adaptĂ©s aux tâches impliquant l'Ă©criture constante de gros volumes de donnĂ©es (par exemple : serveurs de sauvegarde, vidĂ©osurveillance) ;
  • la sensibilitĂ© aux corruptions dites logiques est plus Ă©levĂ©e, notamment en cas de coupure inopinĂ©e de l'alimentation Ă©lectrique ; les modèles rĂ©cents intègrent des technologies attĂ©nuant voire supprimant cette vulnĂ©rabilitĂ© ;
  • le rapport capacitĂ©/prix reste Ă  l'avantage du disque mĂ©canique, mĂŞme si cet Ă©cart tend Ă  se resserrer d'annĂ©e en annĂ©e (depuis le dĂ©but des annĂ©es 2010 — et tout particulièrement depuis les inondations en ThaĂŻlande fin 2011, ayant considĂ©rablement affectĂ© les volumes de production au niveau mondial et entraĂ®nĂ© d'importantes restructurations — les prix des disques durs stagnent ou diminuent très lĂ©gèrement, tandis que les prix des SSD baissent rapidement du fait d'une Ă©volution rapide de la technologie et des capacitĂ©s).

Une tendance apparue aux alentours de 2010 sur les ordinateurs de bureau consiste à installer le système d'exploitation sur un SSD de capacité modérée et les données personnelles sur un disque dur de coût similaire, d'une capacité dix à vingt fois supérieure (pour les ordinateurs portables, on peut coupler un SSD interne avec un disque dur externe, voire remplacer le lecteur de disque optique, en voie d'obsolescence, par une unité de stockage secondaire).

Depuis 2013, les capacitĂ©s de stockage des SSD ont beaucoup Ă©voluĂ© ; en 2016, on peut en trouver de To[4] Ă  16 To, mais Ă  un prix rĂ©servĂ© aux professionnels exigeants[5].

Historique

DĂ©veloppement

L'avantage principal par rapport aux disques durs classiques est l'absence :

  • de mĂ©canique (ce qui diminue leur fragilitĂ© : voir tribologie) et la chaleur gĂ©nĂ©rĂ©e ;
  • de bruit provoquĂ© par la rotation des plateaux et les dĂ©placements des tĂŞtes de lecture/Ă©criture ;
  • de latence, surtout si le disque dur s'est mis en veille ou si ses tĂŞtes se sont parquĂ©es pour cause d'inactivitĂ© prolongĂ©e.

Au moment oĂą sont apparus les SSD, la plupart des disques durs de format 3,5" avaient une vitesse de rotation de 5 400 Ă  7 200 tr/min, soit environ 4,2 ms de latence moyenne, et le temps moyen de recherche[alpha 1] Ă©taient, le plus souvent, compris entre 8 et 12 ms pour un disque dur grand public ; ce qui donnait donc au total un temps d'accès moyen compris entre 12 et 16 ms[alpha 2]. Ce temps d'accès moyen a peu Ă©voluĂ© en dix ans, malgrĂ© l'Ă©volution des capacitĂ©s, tandis que les vitesses des microprocesseurs, des mĂ©moires vives, des cartes graphiques et autres composants principaux strictement Ă©lectroniques d'un ordinateur ont connu d'importants progrès.

L'usage de la mĂ©moire flash supprime quasiment ce problème de temps d'accès, puisqu'il n'est que de l'ordre de 0,1 ms. La rĂ©activitĂ© de l'ordinateur est donc considĂ©rablement augmentĂ©e[alpha 3], et les SSD se rĂ©vèlent presque toujours[alpha 4] plus rapides que les disques durs en termes de dĂ©bit. Ainsi, de nombreux modèles rĂ©cents de SSD au format SATA prĂ©sentent des dĂ©bits supĂ©rieurs Ă  500 Mo/s en lecture et en Ă©criture, alors que les disques durs les plus rapides dĂ©passent rarement 200 Mo/s. L'Ă©cart est encore plus prononcĂ© s'agissant des SSD au format PCI-Express, lesquels, n'Ă©tant pas bridĂ©s par l'interface SATA, peuvent atteindre des dĂ©bits de plusieurs Go par seconde.

Ces propos doivent toutefois être nuancés par deux points :

  • les SSD sont nettement plus performants en lecture, mais leur conception fait qu'ils ne peuvent rĂ©Ă©crire que des zones bien plus grandes qu'un secteur logique[alpha 5]. Cela affecte donc le dĂ©bit observĂ© en pratique pour l'Ă©criture de petits fichiers ;
  • les disques durs laissent beaucoup plus de temps libre au processeur entre deux opĂ©rations que les SSD, du fait de l'absence de dĂ©lais mĂ©caniques pour ces derniers. Il peut donc paradoxalement en rĂ©sulter une perte de rĂ©activitĂ© faute de temps processeur Ă  consacrer au clavier, sauf si, dans un multiprocesseur, on utilise l'« affinitĂ© processeur » pour en dĂ©dier un soit au SSD, soit au clavier [6].

Démocratisation : prix et capacités

SSD Samsung 960 PRO 512 Go en 2018, face et dos.

Les SSD se sont dĂ©mocratisĂ©s Ă  mesure que leur prix diminuait en mĂŞme temps que les capacitĂ©s augmentaient. Au dĂ©but de la commercialisation des SSD, leur capacitĂ© de stockage très faible, de 4 Ă  16 Go, permettait difficilement d'installer un système Windows rĂ©cent associĂ© Ă  un assortiment de logiciels basiques. Par ailleurs, Windows XP n'Ă©tait pas prĂ©vu pour les SSD, sa conception remontant Ă  plus de six ans avant leur apparition effective. Windows Vista, gĂ©rait un peu mieux les SSD et disposait de la fonction ReadyBoost, ce qui permettait l'usage de ces petits SSD en complĂ©ment d'un disque dur. Par la suite, les SSD ont eu une capacitĂ© suffisante pour accueillir un système Windows rĂ©cent sans restriction, Ă  un prix acceptable. La solution privilĂ©giĂ©e par les informaticiens et les utilisateurs soucieux d'optimiser les performances est devenue l'association au sein d'une mĂŞme configuration d'un SSD pour le système et d'un disque dur (ou plusieurs) destinĂ© au stockage. Cette mĂ©thode restait Ă©litiste Ă  cause de l'achat nĂ©cessaire d'au moins deux unitĂ©s de stockage dont l'une prĂ©sentant un faible rapport capacitĂ©/prix ; elle ne s'est dĂ©mocratisĂ©e qu'avec la baisse significative du prix des SSD, Ă©quipant dans un premier temps les PC fixes haut de gamme, avant de s'Ă©tendre progressivement aux tours et aux ordinateurs portables de milieu de gamme.

Le gigaoctet pour 1 € a Ă©tĂ© atteint en France dĂ©but , dans le cadre d'une offre promotionnelle restreinte. La baisse s'est poursuivie : en , le prix moyen a atteint ±0,7 â‚¬/Go, puis ±0,5 â‚¬/Go en , puis ±0,33 â‚¬/Go[7] en sur des modèles de To en TLC.

En mai 2015, Sandisk annonce des SSD de To[8], plutôt destinés aux serveurs informatiques.

En mars 2016, Seagate annonce un SSD dont la vitesse atteint 10 Go/s[9], et Samsung un SSD de plus de 15 To en format 2,5 pouces (6,35 cm)[10].

Formes

Disque dur 2,5"

Boitier SSD 2,5 pouces

Les modèles les plus courants se prĂ©sentent sous le mĂŞme format qu'un disque dur 2,5 pouces en interface SATA (100 Ă— 69,85 mm[11] - [12]) tels que ceux installĂ©s dans des ordinateurs portables, et disposent pareillement d'une alimentation SATA ainsi que d'une connectique SATA III.

Les appareils au format 2,5 pouces peuvent nĂ©cessiter un adaptateur pour ĂŞtre utilisĂ©s dans un emplacement prĂ©vu pour un format 3,5 pouces (8,89 cm), en cas d'installation dans une unitĂ© centrale d'ordinateur fixe.

Deux hauteurs existent : 7 ou 9,5 mm ainsi que des adaptateurs 9,5 mm pour les SSD de mm d’épaisseur, souvent en presspahn.

Carte PCIe

Afin que le dĂ©bit ne soit plus bridĂ© par l'interface SATA, sont apparus des supports SSD sous forme de cartes ou barrettes reliĂ©es directement Ă  la carte mère par le biais d'un connecteur PCI Express (Ă  l'instar d'une carte additionnelle) ayant comme nouveau plafond le dĂ©bit des connecteurs PCI-E, soit Gio/s pour le PCI-3 x4 et Gio/s pour le PCI-4 x4. Ceci permet Ă  certains SSD de dĂ©passer la barre du Gio/s[13], alors que l'interface SATA est limitĂ©e Ă  600 Mio/s pour la toute dernière gĂ©nĂ©ration (SATA III), et mĂŞme 300 Mio/s pour l'interface SATA II qui reste rĂ©pandue sur des machines anciennes.

Les SSD au format PCI Express sont le plus souvent constituĂ©s d'un contrĂ´leur RAID interfaçant deux Ă  huit modules SSD placĂ©s directement sur la carte, permettant ainsi d'obtenir une solution RAID clĂ© en main et bien plus compacte qu'une carte SATA RAID reliĂ©e Ă  des SSD SATA au format 2,5 ou 3,5 pouces (8,89 cm). Cependant, ce type de configuration ne supporte pas encore la commande Trim.

Un telle carte est l'assemblage d'une carte PCIe et d'une carte M.2.

Format mSATA

ExtĂ©rieurement, les cartes mSATA, pour mini S-ATA, ne possèdent pas de boitier et sont donc compactes mais leurs spĂ©cifications très proches de celles de SSD au format 2,5 pouces.

Leurs dimensions sont de 50,8 Â± 0,15 mm Ă— 29,85 Â± 0,15 mm, leurs hauteurs varient suivant les marques et les modèles ainsi une Kingston UV500 mesure 4,85 mm, une Samsung 860 evo de To mesure 3,85 mm.

Format M.2

Ce format est le successeur du mSATA dont les dimensions de 22 mm Ă— 80 mm sont actuellement le standard, mais d'autres sont disponibles :

  • largeur : 12, 16, 22 ou 30 mm ;
  • longueur : 16, 26, 30, 42, 60, 80 ou 110 mm.

Le « type » est construit en concaténant la largeur et la Longueur.

Exemple : une M2 type 22110 aura donc une dimension de 22 Ă— 110 mm.

Encoches « Key »

Décliné en deux grands types, les connecteurs sont distinguables par leur(s) encoche(s) appelées « Key », qui servent de détrompeur de bus.

  • Key M+B : PCI Express x2, x4
  • Key M : PCI Express NVMe x4 (pour Non-Volatile Memory express)

Solutions « artisanales »

Pour contourner les prix très élevés et/ou les capacités restreintes de ces unités de stockage tout en bénéficiant de leurs avantages, diverses solutions exotiques avaient été vendues sur Internet au début de la commercialisation des SSD, par exemple :

  • jeu (Bundle) de barrettes de mĂ©moire vive fixĂ©es sur une carte fille, connectĂ©e Ă  la carte mère via PCI ;
  • multislots de cartes mĂ©moires (CompactFlash).
  • Diverses formes de SSD « exotiques »
  • Carte mĂ©moire constituĂ©e de barrettes DDR et branchĂ©e en PCI.
    Carte mémoire constituée de barrettes DDR et branchée en PCI.
  • Barrette de RAM connectĂ©e via SATA.
    Barrette de RAM connectée via SATA.
  • Adaptateur pour carte CompactFlash.
    Adaptateur pour carte CompactFlash.

Fonctionnement et architecture

Un SSD stocke les données sur de la mémoire flash, de la même manière qu'une clé USB ou une carte mémoire. Un SSD est donc un support de mémoires flash relié à l'ordinateur, souvent via l'interface SATA III, mais celle-ci est progressivement remplacée par l'interface PCI-E, qui permet d'obtenir de bien meilleures performances. Cette mémoire flash, répartie sur la carte en plusieurs modules, est pilotée par un contrôleur qui organise le stockage et la répartition des données sur l'ensemble de la mémoire. Les données échangées entre le système d'exploitation et la mémoire transitent par une mémoire tampon. Le SSD fonctionne logiciellement par un BIOS interne qui permet, entre autres, la manipulation de divers paramètres ainsi que l'affichage de nombreuses informations non accessibles par l'intermédiaire du système d’exploitation.

Comparaison entre SSD et HDD

Caractéristique SSD Disque mécanique
Temps d'accès alĂ©atoire Environ 0,1 ms De 2,9 Ă  12 ms
Vitesse de lecture/Ă©criture De 27 Mo/s Ă  Go/s[13] De 12 Ă  260 Mo/s
IOPS De 8 000 Ă  3 000 000 (connexion PCIe, plusieurs tĂ©raoctets) DĂ©pend de la vitesse de rotation, du nombre d'axes, du temps
Fragmentation Aucun ou très peu d'effet sur les performances (accès direct à chaque cellule) Ralentit l'accès aux fichiers

Dépend du type de système de fichiers
Augmente avec le temps et avec le taux de remplissage de la partition

Bruit Quasi nul (pas d'éléments en mouvement, un léger sifflement, connu sous l'appellation anglaise "coil whine (en)", est parfois audible) Variable dépendant du déplacement des têtes de lecture
Tend Ă  s'accentuer avec le temps, notamment Ă  cause de la fragmentation
Vulnérabilités Sensible au nombre de cycles d'écriture
Les coupures de courant peuvent rendre l'unité irrécupérable sur certains (anciens) modèles[14]
Chocs et vibrations, sensibles aux champs magnétiques
Taille 4,57-6,35 cm (1,8-2,5″) pour les SSD au format SATA (en fonction des modèles)

Taille variable pour les SSD au format PCI-Express

4,57-6,35-8,89 cm (1,8-2,5-3,5″) (en fonction des modèles)
Masse Quelques dizaines de grammes Environ 100 g pour un modèle en 2,5"

Environ 650 g pour un modèle en 3,5"

DurĂ©e de vie Garantie constructeur variant de 1 Ă  10 ans
Cycles d'Ă©criture garantis : 10 000 (SLC), 5 000 (MLC) et 1 000 (TLC)
Garantie constructeur de 2 Ă  5 ans

Durée de vie sans limite a priori, mais limitée par la fragilité mécanique

Rapport coĂ»t/capacitĂ© Environ 0,18 â‚¬/Gio (2019) Environ 0,06 â‚¬/Gio (2019)
CapacitĂ© de stockage Jusqu'Ă  30 To (Samsung PM1643)[15] - [16], 128 Go Ă  To pour les modèles les plus courants en 2019 Jusqu'Ă  12 To[17] - [18], 500 Go Ă  To pour les modèles les plus courants en 2019
Consommation 0,1 Ă  0,9 W (veille) jusqu'Ă  0,9 W (activitĂ©) 0,5 Ă  1,3 W (veille) 2 Ă  4 W (activitĂ©)

Techniques

Types de mémoires SLC, MLC, TLC ou QLC

Il existe quatre types de mémoire flash[19] - [20] - [21] :

  1. la SLC NAND (Single Level Cell), dans laquelle chaque cellule élémentaire peut stocker un seul bit (deux niveaux de charge) ;
  2. la MLC NAND (Multi Level Cell), dans laquelle les cellules peuvent stocker plusieurs bits (le plus souvent 2 bits), soit quatre niveaux de charge, et rĂ©fĂ©rencĂ©s comme DLC NAND (Dual Level Cell) ;
  3. la TLC NAND (Triple Level Cell), variante de MLC comportant 3 bits, soit huit niveaux de charge, Ă©galement appelĂ©e MLC « X3 » (introduite en 2009) et qui augmente encore le nombre de bits stockĂ©s par cellule ;
  4. la QLC (Quad Level Cell), variante de la TLC, est capable de stocker 4 bits par cellule et la capacitĂ© de stockage augmente de 33 %. La QLC ne supporte qu'environ 1 000 cycles Ă©criture/effacement, ce qui est faible, mais possède Ă©galement une capacitĂ© de stockage plus Ă©levĂ©e et un prix plus bas.

Concernant les performances sans cache :

SLC (cellule mononiveau/1 bit) >> MLC (cellule multiniveau/2 bits) >> TLC (cellule triple niveau/3 bits) >> QLC (cellule quadri-niveau/4 bits)

Le stockage de plusieurs bits par cellule permet de diminuer fortement le coût de fabrication, puisque la densité est au minimum doublée, mais dégrade les performances, surtout en écriture, et réduit grandement la durée de vie des cellules.

Sur des mĂ©moires 50 nm, les SLC supportent environ 100 000 cycles Ă©criture/effacement.

La MLC a une durĂ©e de vie de l'ordre de dix fois infĂ©rieure, variant d'environ 3 000 Ă  10 000 cycles par cellule, selon les modèles.

La TLC est la technologie ayant la plus faible durĂ©e de vie avec environ 1 000 cycles d'Ă©criture par cellule[22].

La QLC est la technologie ayant une durĂ©e de vie comparable Ă  la TLC en cycles d'Ă©criture (environ 1 000 cycles d'Ă©criture par cellule). Elle est bien adaptĂ©e pour de gros volumes de stockage statiques (par exemple une vidĂ©othèque ou une discothèque). En effet, la mĂ©moire QLC n'est plus basĂ©e sur la technologie NAND 2D (1 couche) mais sur la technologie NAND 3D (32 couches successives), pour une plus grande capacitĂ© de stockage. Ainsi, la technologie de NAND 3D a vu le jour. Contrairement Ă  la NAND 2D qui ne peut que stocker les donnĂ©es que sur une couche, la NAND 3D permet de stocker les donnĂ©es sur 32 couches. Par consĂ©quent, chaque cellule de la MLC augmente au maximum de 2 Go, tandis que chaque cellule de la TLC augmente au moins de 48 Go. Un cache utilisant une partie de la QLC en SLC (c'est-Ă -dire juste un bit par cellule) permet d'effectuer en temps masquĂ© les Ă©critures, si celles-ci sont ponctuelles[23].

De nombreux SSD sont commercialisĂ©s avec une garantie constructeur de 5 Ă  10 ans[24]. Cela ne prĂ©munit pas contre la perte de donnĂ©es, mais garantit qu'en cas de dĂ©faillance (si on a gardĂ© une preuve d'achat ou si on s'est enregistrĂ© par Internet) sera fourni un SSD neuf de caractĂ©ristiques Ă©quivalentes sur lequel on pourra restaurer sa dernière sauvegarde.

La majorité des SSD grand public utilisent de la mémoire MLC (en 2017 c'est le TLC qui est largement majoritaire), tandis que la mémoire SLC est réservée aux SSD haut de gamme, principalement destinés à un usage professionnel (entreprises, serveurs), ce qui crée le problème principal du SSD grand public : la limite des cycles d'écriture[25].

Innodisk, concepteur de SSD pour applications industrielles, a breveté la technologie iSLC, qui promet une performance plus durable et plus fiable que les classiques flash NAND MLC, mais à un moindre coût[26]. Il existe aussi une variante du type MLC, appelée eMLC (pour Enterprise MLC), permet un nombre plus élevé de cycles d'écriture[27].

Durée de vie

La durée de vie d'un SSD s'estime d'une manière un peu différente de celle des disques durs.

Elle tient compte essentiellement de deux caractéristiques techniques :

  • le MTBF (en anglais Mean Time Before Failure), qui s'exprime en nombre d'heures de fonctionnement[28]. L'ordre de grandeur est le million d'heures, soit plus d'une centaine d'annĂ©es pour ce type de produit en utilisation courante ;
  • le TBW (de l'anglais TeraByte Written) qui s'exprime en tĂ©raoctets, correspond Ă  la quantitĂ© maximale d'octets pouvant ĂŞtre Ă©crits sur le SSD au cours de sa vie.

Le TBW est défini par la formule suivante[29] - [30] :

Il se calcule à partir des trois éléments suivants :

  • la capacitĂ© du SSD exprimĂ©e en Go ;
  • le nombre de cycles Ă©criture/effacement (Ă©galement appelĂ© cycles P/E pour Program / Erase Cycles)[31]. Ce chiffre est exprimĂ© en millier(s), dizaine(s) de millier(s) ou centaine(s) de millier(s) en fonction de la technologie utilisĂ©e dans le processus de fabrication des puces. Il exprime le nombre de fois que l'on peut rĂ©pĂ©ter l'opĂ©ration d'Ă©criture ou d'effacement d'une zone mĂ©moire avant qu'elle ne se dĂ©grade. (Voir chapitre prĂ©cĂ©dent « Types de mĂ©moire ».) ;
  • le WAF (de l'anglais Write Amplification Factor). Il s'agit du rapport entre le nombre d'octets rĂ©ellement Ă©crits sur le SSD et le nombre d'octets Ă©crits vu de l’hĂ´te. Ce chiffre varie en fonction du type de contrĂ´leur utilisĂ© dans le SSD et du système hĂ´te. Certains fabricants utilisent Ă©galement le terme WAI (de l'anglais Write Acceleration Index) qui signifie la mĂŞme chose.

On voit parfois apparaître dans certaines documentations le terme DWPD (de l'anglais Drive Writes Per Day), qui est une autre façon d'exprimer le TBW. Alors que le TBW exprime la quantité maximale de téraoctets pouvant être transférés sur un SSD pendant toute sa durée de sa vie, le DWPD exprime le nombre maximal journalier de réécritures de la capacité totale du SSD. Cette valeur ne dépend pas de la capacité de l'unité SSD considérée contrairement au TBW.

En général, le TBW est utilisé pour des SSD d'entrée de gamme, alors que le DWPD est plutôt réservé aux SSD à usage professionnel, comme ceux qui sont intégrés dans des serveurs.

Le DWPD se calcule à partir du TBW et de la période de garantie du constructeur ; il est défini par la formule suivante[32] - [33] :

La formule est réversible, on peut également calculer le TBW à partir du DWPD et de la durée de garantie du SSD :

Attention: ne pas confondre Go (gigaoctet), To (téraoctet) et Gio (gibioctet), Tio (tébioctet) (voir la section Multiples de l'Article Octet pour les explications).

D'autres technologies peuvent influencer la durée de vie, comme la prise en charge ou non des commandes Trim.

Commande Trim

La commande Trim, disponible sur la plupart des modèles récents de SSD, permet aux systèmes d'exploitation modernes d'éviter que les performances ne se dégradent avec le temps et le remplissage de chaque partition. Elle est supportée par les systèmes d'exploitation suivants :

  • GNU/Linux Ă  partir du noyau 2.6.33 et dĂ©rivĂ© Android 4.3 ;
  • Microsoft Windows Ă  partir de Windows 7 ;
  • macOS depuis la version 10.6.6 (Ă  l'origine uniquement sur les SSD livrĂ©s par Apple[34], ensuite sur tous les SSD montĂ©s en interne ou connectĂ©s en Thunderbolt mais pas pour les SSD externes USB) ;
  • FreeBSD Ă  partir des versions 8.1 et 9.2 pour UFS, 9.2 et 10.0 pour ZFS. Le support du RAID logiciel leur est ajoutĂ© en 10.0. Les systèmes d'exploitation dĂ©rivĂ©s en hĂ©ritent : FreeNAS 9.1.0, PC-BSD 10.0, NAS4Free[35] 9.3.0.2 ;
  • NetBSD 6 pour FFS ;
  • DragonFly 4.1 ;
  • AIX et HP-UX avec JFS2 en 2012 ;
  • OpenSolaris build 146 avec ZFS, et dĂ©rivĂ© Oracle Solaris 11 ;
  • Illumos avec ZFS, implĂ©mentation en cours en 2014.

Cette commande vise à notifier le contrôleur du SSD lors de l'effacement d'un fichier, lequel peut alors effacer les cellules de mémoire flash anciennement utilisées, en arrière-plan, lors des périodes de faible sollicitation, afin d'optimiser les écritures ultérieures qui pourront alors être effectuées sans avoir à réaliser l'effacement préalable imposé par la technologie de la mémoire flash.

Cette technique permet en outre d'augmenter la durée de vie des SSD, par la mise en rotation des cellules utilisées à chaque écriture — à la condition de laisser suffisamment d'espace libre sur le support. En effet, plus l'espace de stockage disponible est restreint, plus les écritures se feront fréquemment sur les mêmes cellules, réduisant donc l'efficacité de cette technique.

Le fabricant Kingston a mis au point une technique alternative permettant de bénéficier des avantages de la commande Trim même avec les systèmes d'exploitation qui ne sont pas optimisés pour la gestion des supports SSD et qui ne gèrent donc pas cette commande. Cette technique nommée « Garbage Collector » (en français, ramasse-miettes) fonctionne au niveau du micrologiciel du SSD, indépendamment du système d'exploitation[36].

Principaux constructeurs

Produits finis

ContrĂ´leurs

Notes et références

Notes

  1. Temps nécessaire aux têtes de lecture/écriture pour se mettre en position de lecture/écriture.
  2. Davantage en Ă©criture parce que des tables d'allocation doivent ĂŞtre mises Ă  jour.
  3. En particulier, quand le système d'exploitation et les logiciels sont installés sur un support SSD, le temps de démarrage est nettement réduit, tandis que l'affichage initial des logiciels nécessitant le chargement de nombreux modules lourds est presque instantané (par exemple : logiciels d'infographie, de montage vidéo, jeux vidéo, voire certains navigateurs Web comportant de nombreux modules d'extension).
  4. Il y a cependant des exceptions : par exemple certains modèles de SSD ont tendance Ă  chauffer après plusieurs minutes de transfert soutenu, et vont automatiquement rĂ©duire leur dĂ©bit jusqu'Ă  ce que la tempĂ©rature revienne Ă  la normale (on parle en anglais de throttling), auquel cas, le dĂ©bit sĂ©quentiel peut descendre en dessous de celui d'un disque dur (par exemple un SSD avec un dĂ©bit maximal de 500 Mo/s peut en cas de throttling descendre Ă  100 Mo/s, alors qu'un disque dur effectuant le mĂŞme transfert peut conserver un dĂ©bit d'environ 200 Mo/s).
  5. « Les SSD peuvent Ă©crire des blocs de 4 kio, mais pour des raisons matĂ©rielles ils doivent effacer des blocs plus larges (par exemple 128 ou 512 kio. » Voir trim (informatique).

Références

  1. « disque électronique », Grand Dictionnaire terminologique, Office québécois de la langue française (consulté le ).
  2. « disque statique à semiconducteurs », Grand Dictionnaire terminologique, Office québécois de la langue française (consulté le ).
  3. (en) Higher reliability with IBM glass substrate disks - hitachigst.com, juillet 1999
  4. Un SSD de To au format 2,5 pouces, sur omsguide.fr, 17 juillet 2016.
  5. Le SSD de 16 To de Samsung coĂ»te… 10 000 dollars., sur clubic.com, 2 aoĂ»t 2016
  6. (en) Arnaud Adant, 50 Tips for Boosting MySQL Performance, page 22 [PDF], MySQL Connect/Oracle, 2013 (chercher sur « affinity ») [PDF]
  7. Test / Samsung 850 Evo To, mémoire 3D V-NAND en TLC, sur lesnumeriques.com, 6 mars 2015 (consulté le 8 février 2016).
  8. SSD : le cap des To dépassé, mais attention aux coups de chaud, sur zdnet.fr, 12 mai 2015 (consulté le 8 mars 2016).
  9. Record du monde de SSD Ă  10 Go/s, sur tomshardware.fr, 8 mars 2016.
  10. Capacité record pour le SSD de Samsung, sur commentcamarche.net, 4 mars 2016 (consulté le 10 mars 2016).
  11. « SSD 860 EVO SATA III 2,5 pouces 4 To », sur Samsung fr (consulté le )
  12. « SSD 860 QVO 4 To », sur Samsung fr (consulté le )
  13. Un SSD en PCI Express Ă  Go/s !, sur pcworld.fr.
  14. Comprendre la robustesse des SSD lors d'une coupure de courant, Conférence Fast 13, février 2013
  15. 16 To : le SSD dĂ©passe dĂ©sormais le disque dur en capacitĂ©, sur clubic.com, 19 aout 2015 (consultĂ© le 5 juin 2016).
  16. (en) « Samsung Electronics Begins Mass Production of Industry’s Largest Capacity SSD – 30.72TB – for Next-Generation Enterprise Systems », sur news.samsung.com (consulté le )
  17. (en) HGST a Western Digital company announces the world’s first enterprise-class 10TB HDD, sur le site Hitachi Global Storage Technologies.
  18. Western Digital rachète la division disques durs d'Hitachi - Nil Sanyas, Nextinpact.com, 7 mars 2011
  19. (en-US) Ian Paul, « Multi-Layer SSDs: What Are SLC, MLC, TLC, QLC, and PLC? », sur How-To Geek (consulté le )
  20. « Les différents types de SSD et leurs caractéristiques | Guide d'achat Materiel.net », sur materiel.net (consulté le )
  21. (es) Tipos de memorias en los discos SSD: 3D MLC, TLC, QLC..., 7 avril 2020.
  22. (en) Samsung SSD 840 (250GB) Review, sur Anandtech, 23 février 2012.
  23. Cache SLC : 860 QVO, un mauvais SSD ?, overclocking.com du 29 avril 2019, consulté le 26 avril 2019
  24. Samsung 850 Evo : la TLC prend une autre dimension, sur clubic.com, 4 mars 2015 (consulté le 10 mars 2016).
  25. les puces MLC sont moins chères que les coĂ»teuses SLC. On estime en gĂ©nĂ©ral Ă  100 000 le nombre d'Ă©critures possibles par cellule SLC contre 10 000 pour une cellule d'une puce MLC, pcworld.fr, 2 fĂ©vrier 2009.
  26. (en) Innodisk Innovates on NAND Flash to create iSLC Flash Technology, More Reliable Than MLC sur prweb.com, le 2 avril 2013.
  27. enterprise MLC (eMLC), sur techtarget.com (consulté le 8 février 2016).
  28. « Spécifications du SanDisk Extreme II SSD », sur kb-fr.sandisk.com (consulté le )
  29. (en) Ryan Smith, « Become a SSD expert in minutes! », sur pdfslide.net, (consulté le ), p. 27
  30. (en) Samsung, « Endurance of the SSD for data centers », sur samsung.com, (consulté le ), p. 2
  31. (en) « Technical white paper SSD endurance HP Workstations » [PDF], sur h20195.www2.hp.com/v2/, (consulté le )
  32. (en) Jim Handy, « Comparing DWPD to TBW », sur thessdguy.com, (consulté le )
  33. (en) Randy Glissmann, « TCO Ramifications of SSD Write Endurance - Micron Technology, Inc. » [PDF], sur micron.com, (consulté le )
  34. Mac OS X : le TRIM pour tous les SSD, c'est possible !, Macworld.fr, 28 mars 2011.
  35. NAS4Free
  36. « Comprendre les SSD - Garbage collector : actualités et tests informatiques », sur infobidouille.com (consulté le ).

Voir aussi

Articles connexes

Liens externes

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.