Accueil🇫🇷Chercher

PyTorch

PyTorch est une bibliothèque logicielle Python open source d'apprentissage machine qui s'appuie sur Torch (en) développée par Meta[2].

PyTorch
Description de l'image Pytorch logo.png.

Informations
Créateur Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan
Dernière version 2.0.1 ()[1]
DĂ©pĂ´t github.com/pytorch/pytorch
Écrit en C++, Python, C et Compute Unified Device Architecture
Système d'exploitation Linux, macOS et Microsoft Windows
Type Bibliothèque logicielle
Bibliothèque logicielle Python (d)
Licence Berkeley Software Distribution
Site web pytorch.org

PyTorch est gouverné par la PyTorch Foundation[3].

PyTorch permet d'effectuer les calculs tensoriels nécessaires notamment pour l'apprentissage profond (deep learning). Ces calculs sont optimisés et effectués soit par le processeur (CPU) soit, lorsque c'est possible, par un processeur graphique (GPU) supportant CUDA. PyTorch a été créé par les équipes de recherche de Facebook, précédées par les travaux de recherche de Ronan Collobert au cœur de l'équipe de Samy Bengio[4] à l'IDIAP.

PyTorch se présente sous les traits d'un dérivé d'un logiciel antérieur, Torch, dont l'utilisation nécessitait la maîtrise du langage Lua. PyTorch est désormais indépendant de Lua et se programme en Python.

PyTorch permet, entre autres, de:

  • manipuler des tenseurs (tableaux multidimensionnels), de les Ă©changer facilement avec Numpy et d'effectuer des calculs efficaces sur CPU ou GPU (par exemple, des produits de matrices ou des convolutions);
  • calculer des gradients pour appliquer facilement des algorithmes d'optimisation par descente de gradient. PyTorch utilise la bibliothèque autograd[5].

Tenseurs PyTorch

PyTorch définit une classe appelée Tensor (torch.Tensor) pour stocker la data et opérer sur des tableaux rectangulaires multidimensionnels homogènes de nombres. Les tenseurs PyTorch sont similaires aux tableaux NumPy, mais peuvent également être utilisés sur un GPU Nvidia compatible CUDA. PyTorch prend en charge divers sous-types de Tensors[6].

Historique

En Caffe2 fusionne avec PyTorch [7]

PyTorch rejoint la Foundation Linux en septembre 2022[8].

Exemple

Le programme suivant montre la fonctionnalité de la bibliothèque avec un exemple simple[9] :

import torch
dtype = torch.float
device = torch.device("cpu") # Tous les calculs seront exécutés sur le processeur
# device = torch.device("cuda:0") # Tous les calculs seront exécutés sur la carte graphique
# Création d'un tenseur rempli avec des nombres aléatoires
a = torch.randn(2, 3, device=device, dtype=dtype)
print(a) # Affichage du tenseur a
# Output: tensor([[-1.1884,  0.8498, -1.7129],
#                  [-0.8816,  0.1944,  0.5847]])
# Création d'un tenseur rempli avec des nombres aléatoires
b = torch.randn(2, 3, device=device, dtype=dtype)
print(b) # Affichage du tenseur b
# Output: tensor([[ 0.7178, -0.8453, -1.3403],
#                  [ 1.3262,  1.1512, -1.7070]])
print(a*b) # Affichage du produit (terme Ă  terme) des deux tenseurs
# Output: tensor([[-0.8530, -0.7183,  2.58],
#                  [-1.1692,  0.2238, -0.9981]])
print(a.sum()) # Affichage de la somme de tous les éléments du tenseur a
# Output: tensor(-2.1540)
print(a[1,2]) # Affichage de l'élément de la 2ème rangée et de la 3ème colonne de a
# Output: tensor(0.5847)
print(a.min()) # Affichage de la valeur minimale du tenseur a
# Output: tensor(-1.7129)

Annexes

Notes et références

  1. « Release 2.0.1 », (consulté le )
  2. Julien Bergounhoux, « Avec PyTorch 1.0, Facebook cherche à créer la boite à outil ultime pour l'intelligence artificielle », L'Usine digitale,‎ (lire en ligne)
  3. (en) « PyTorch », sur www.pytorch.org (consulté le )
  4. (en) « Torch: A Modular Machine Learning Software Library », sur citeseerx.ist.psu.edu, (consulté le )
  5. « Automatic differentiation package - torch.autograd — PyTorch master documentation », sur pytorch.org (consulté le )
  6. « An Introduction to PyTorch – A Simple yet Powerful Deep Learning Library », sur analyticsvidhya.com, (consulté le )
  7. https://caffe2.ai/blog/2018/05/02/Caffe2_PyTorch_1_0.html
  8. #LeBrief, « Meta transfère la gouvernance de PyTorch à la Linux Foundation », sur www.nextinpact.com, (consulté le )
  9. Jeremy Howard, Sylvain Gugger, Deep Learning for Coders with fastai and PyTorch, O'Reilly, (ISBN 978-1492045526, lire en ligne)


Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.