En mathématiques, la moyenne de Gini est une généralisation de plusieurs familles de moyennes. Elle a été introduite par le mathématicien italien Corrado Gini en 1938 [1] .
Tracé des moyennes de Gini, de Lehmer et d'ordre p de 1 et 2.
Définition
Étant donnés deux paramètres réels r et s, la moyenne de Gini d'ordre r,s d'une famille de nombres réels strictement positifs x1,...,xn est définie par :
.
En particulier, pour deux réels strictement positifs a,b :
Par convention, on désigne la moyenne de Gini d'ordre (1,1) comme la moyenne de Gini :
La littérature donne parfois la définition
.
Propriétés
Les moyennes de Gini respectent les conditions de majoration et minoration des moyennes :
Cependant, elles ne sont pas monotones (augmenter une valeur xi ne va pas nécessairement faire varier la moyenne de Gini de l'ensemble)[2].
On peut comparer les moyennes de Gini entre elles sous certaines conditions[3]
(en) Jozsef Sandor, « A note on the Gini means », General Mathematics, vol. 12, no 4, , p. 17–21 (lire en ligne)
(en) Wei-Dong Jiang, Yong-Ming Jiang et Huan-Nan Shi, « Schur-convexity and Schur-geometrically concavity of Gini means », Computers and Mathematics with Applications, vol. 57, , p. 266–274
Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.