Accueil🇫🇷Chercher

Madhava de Sangamagrama

Madhava de Sangamagrama (1350-1425) est un mathématicien indien, père de l'analyse mathématique. Il fonda l'école mathématique et astronomique du Kerala.

Madhava de Sangamagrama
Biographie
Naissance

Sangamagrama (en)
Décès

Lieu inconnu
Nom dans la langue maternelle
സംഗമഗ്രാമ മാധവൻ ou संगमग्राम के माधव
Domicile
Sangamagrama (en)
Activités

Calcul de pi

Vers 1400, Madhava de Sangamagrama a trouvé les séries qui portent son nom (en) et qui correspondent, en langage moderne, aux développements en série entière ou en série de Taylor des fonctions trigonométriques sinus, cosinus et arctangente.

Le développement de arctangente, redécouvert par James Gregory et Gottfried Wilhelm Leibniz au XVIIe siècle, est la série dite de Madhava-Gregory-Leibniz (un ou deux de ces trois noms étant souvent omis) :

Son application à x = 1, elle aussi connue sous le nom de série (ou formule) de Madhava-Leibniz[1] - [2] - [3], donne une expression du nombre π :

mais la convergence de cette série alternée est trop lente pour pouvoir calculer, en pratique, plusieurs décimales : environ 1 000 termes sont nécessaires pour arriver à l'intervalle de 2.10–3 qu'avait atteint Archimède.

En l'appliquant plutôt à x = 1/3, la série converge bien plus vite :

ce qui a permis à Madhava de donner comme approximation de π le nombre 3,14159265359, qui a 11 décimales correctes. Le record a été battu en 1424 par le mathématicien perse Al-Kashi, qui a réussi à donner 16 décimales.

Notes et références

  1. (en) George E. Andrews, Richard Askey et Ranjan Roy, Special Functions, CUP, , 682 p. (ISBN 978-0-521-78988-2, lire en ligne), p. 58.
  2. (en) R. C. Gupta, « On the remainder term in the Madhava-Leibniz’s series », Ganita Bharati, vol. 14, nos 1-4, , p. 68-71.
  3. Roy, Ranjan, The discovery of the series formula for π by Leibniz, Gregory and Nilakantha, Math. Mag., 1990, 63, 291-306.

Lien externe

(en) John J. O'Connor et Edmund F. Robertson, « Madhava of Sangamagramma », sur MacTutor, université de St Andrews.

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.