Accueil🇫🇷Chercher

Lemme (mathématiques)

Un lemme, en mathématiques et en logique mathématique, est un résultat intermédiaire sur lequel on s'appuie pour conduire la démonstration d'un théorème plus important.

Étymologie

Dans l'Antiquité grecque, lemme (en grec ancien : λῆμμα) était un terme de logique : il désignait la majeure du syllogisme, c'est-à-dire la première assertion. Dans la dialectique grecque, le lemme, le prolemme et l'épiphore sont les trois parties de l'argument.

Par extension, lemme désigne en mathématiques l'un des arguments de la preuve sans en être le fondement puis, plus généralement, un résultat intermédiaire utile à la démonstration d'un théorème[1].

Principe

En effet, la méthode de démonstration d'un théorème est souvent la suivante :

  1. on veut démontrer le théorème T à partir d'une certaine liste d'axiomes et d'autres résultats déjà démontrés mais cela n'a pas l'air évident au premier abord,
  2. mais on se dit que, si on savait L vrai (L étant alors une autre assertion dénommée lemme), on pourrait conclure immédiatement étant donné les règles de logique admises,
  3. on pose alors L comme le résultat à démontrer et on lui applique une méthode de démonstration de théorème,
  4. une fois L démontré, on en déduit T.

Ce principe est notamment utilisé par les logiciels appelés assistants de preuve tels Coq ou PVS.

Certains lemmes démontrés deviennent plus célèbres que le théorème pour lequel ils ont été créés et restent connus sous le nom « lemmes de X »[2] - [3] - [4] bien que jouant habituellement un rôle de théorème.

Exemples de lemmes célèbres

Notes et références

  1. Bertrand Hauchecorne, Les mots et les maths. Dictionnaire historique et étymologique du vocabulaire mathématique., Paris, Ellipses, , 223 p. (ISBN 978-2-7298-1528-8 et 2-7298-1528-7).
  2. https://gallica.bnf.fr/ark:/12148/bpt6k2025807/texteBrut.
  3. https://www.persee.fr/doc/reco_0035-2764_1997_num_48_1_409865.
  4. Comme le lemme de X. Freixas (es) ?

Article connexe

Liste de lemmes.

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.