Accueil🇫🇷Chercher

Hyperoctaèdre

Un hyperoctaèdre est, en géométrie, un polytope régulier convexe, généralisation de l'octaèdre en dimension quelconque. Un hyperoctaèdre de dimension n est également parfois nommé polytope croisé, n-orthoplexe ou cocube.

Diagramme de Schlegel de l'hexadécachore, hyperoctaèdre en dimension 4.

Définition

Un hyperoctaèdre est l'enveloppe convexe des points formés par toutes les permutations des coordonnées (±1, 0, 0, …, 0).

Exemples

En dimension 1, l'hyperoctaèdre est simplement le segment de droite [-1, +1] ; en dimension 2, il s'agit d'un carré de sommets {(1, 0), (-1, 0), (0, 1), (0, -1)}. En dimension 3, il s'agit de l'octaèdre. En dimension 4, il s'agit de l'hexadécachore.

Propriétés

L'hyperoctaèdre de dimension n possède 2n sommets et 2n facettes (de dimension n-1), lesquelles sont des n-1 simplexes. Les figures de sommet sont toutes des n-1 hyperoctaèdres. Son symbole de Schläfli est {3,3,…,3,4}, avec n-1 chiffres.

De façon générale, le nombre de composants de dimension k d'un hyperoctaèdre de dimension n est donné par : . Son volume est .

L'hyperoctaèdre est le polytope dual de l'hypercube. Avec ce dernier et les simplexes, il forme l'une des trois familles de polytopes réguliers.

Annexes

Liens internes

Liens externes

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.