Accueil🇫🇷Chercher

Groupe de Mathieu

En mathématiques, les groupes de Mathieu sont cinq groupes simples finis découverts par le mathématicien français Émile Mathieu. Ils sont habituellement perçus comme des groupes de permutations sur n points (où n peut prendre les valeurs 11, 12, 22, 23 ou 24) et sont nommés Mn.

Les groupes de Mathieu ont été les premiers groupes sporadiques découverts.

Les groupes M24 et M12 sont 5-transitifs, les groupes M23 et M11 sont 4-transitifs et M22 est 3-transitif. Cette transitivité est même stricte pour M11 et M12.

Il résulte de la classification des groupes simples finis que les seuls groupes de permutations 4-transitifs sont les groupes symétrique et alterné (de degré ≥ 4 et ≥ 6 respectivement) et les groupes de Mathieu M24, M23, M12 et M11[1].

Ordres

Groupe Ordre Ordre factorisé
M24244 823 040210.33.5.7.11.23
M2310 200 96027.32.5.7.11.23
M22443 52027.32.5.7.11
M1295 04026.33.5.11
M117 92024.32.5.11

Constructions des groupes de Mathieu

Groupe d'automorphismes des systèmes de Steiner

Il existe, à une équivalence près, un unique système de Steiner S(5,8,24). Le groupe M24 est le groupe d'automorphismes de ce système de Steiner[2], c’est-à-dire l'ensemble des permutations qui applique chaque bloc vers un certain autre bloc. Les sous-groupes M23 et M22 sont définis comme étant les stabilisateurs d'un seul point et de deux points respectivement.

De manière similaire, il existe, à une équivalence près, un unique système de Steiner S(5,6,12) et le groupe M12 est son groupe d'automorphismes[3]. Le sous-groupe M11 est le stabilisateur d'un point.

Une construction alternative de S(5,6,12) est le « Chaton » de Curtis[4].

Groupe d'automorphisme du code de Golay

Le groupe M24 peut aussi être vu comme le groupe d'automorphismes du code de Golay binaire W, i.e., le groupe des permutations de coordonnées appliquant W vers lui-même. Nous pouvons aussi le regarder comme l'intersection de S24 et Stab(W) dans Aut(V). Les mots code correspondent de manière naturelle aux sous-ensembles d'un ensemble de 24 objets. Ces sous-ensembles correspondant aux mots code à 8 ou 12 coordonnées égales à 1 sont appelés octades ou dodécades respectivement. Les octades sont des blocs d'un système de Steiner S(5,8,24).

Les sous-groupes simples M23, M22, M12 et M11 peuvent être définis comme des sous-groupes de M24, stabilisateurs respectivement de coordonnée unique, une paire ordonnée de coordonnées, une paire de dodécades complémentaires et une paire de dodécade avec une coordonnée seule.

M12 possède un indice 2 dans son groupe d'automorphismes. Comme un sous-groupe de M24, M12 agit sur la deuxième dodécade comme une image d'automorphisme extérieur de son action sur la première dodécade. M11 est un sous-groupe de M23 mais pas de M22. Cette représentation de M11 possède des orbites de 11 et 12. Le groupe d'automorphismes de M12 est un sous-groupe maximal de M24 d'indice 1288.

Il existe une connexion très naturelle entre les groupes de Mathieu et les groupes de Conway plus grands parce que le code binaire de Golay et le réseau de Leech se trouvent tous deux dans des espaces à 24 dimensions. Les groupes de Conway se retrouvent à leur tour dans le groupe Monstre. Robert Griess fait référence aux 20 groupes sporadiques trouvés dans le Monstre comme la famille heureuse et aux groupes de Mathieu comme la première génération.

Groupe d'automorphismes de graphes

Le groupe M23 peut être vu comme le groupe d'automorphismes du graphe tronqué de Witt, un graphe 15-régulier possédant 506 sommets et 3 795 arêtes[5].

Notes et références

  1. p. 152 de (en) Shreeram S. Abhyankar, « Resolution of singularities and modular Galois theory », Bull. Amer. Math. Soc. (New Series), vol. 38, no 2,‎ , p. 131-169 (lire en ligne)
  2. Pour une introduction d'une construction de M24 comme groupe d'automorphismes de S(5,8,24) via le Générateur d'Octade Miraculeux de R. T. Curtis, voir Géométrie du carré 4x4.
  3. L'analogue de Conway pour S(5,6,12), le miniGOM, peut être trouvé dans (en) J. H. Conway et N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, coll. « GMW » (no 290), , 3e éd., 706 p. (ISBN 978-0-387-98585-5, lire en ligne).
  4. (en) R. T. Curtis, The Steiner System S(5,6,12), the Mathieu Group M12 and the "Kitten", London, Academic Press, coll. « Computational Group Theory »,
  5. (en) A. E. Brouwer, A. M. Cohen et A. Neumaier, « The Truncated Witt Graph Associated to M23 », dans Distance Regular Graphs, New York, Springer-Verlag, , p. 367-368, §11.4B
  • (en) J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker (en) et R. A. Wilson, ATLAS of Finite Groups : maximal subgroups and ordinary characters for simple groups, Oxford, OUP, , 252 p. (ISBN 0-19-853199-0)
  • (en) R. T. Curtis, « A new combinatorial approach to M24 », Math. Proc. Camb. Phil. Soc., vol. 79,‎ , p. 25-42
  • (en) Robert L. Griess, Twelve Sporadic Groups, Springer-Verlag,
  • É. Mathieu, « Mémoire sur l’étude des fonctions de plusieurs quantités, sur la manière de les former et sur les substitutions qui les laissent invariables », Journal de Liouville,‎ , p. 241 et s.
  • É. Mathieu, « Sur la fonction cinq fois transitive de 24 quantités », Journal de Liouville, vol. (2) XVIII,‎ , p. 25-47
  • (en) Thomas M. Thompson, From Error Correcting Codes through Sphere Packings to Simple Groups, MAA, coll. « Carus Mathematical Monographs »,
  • (en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Mathieu group » (voir la liste des auteurs).

Lien externe

« Moggie »(Archive.org • Wikiwix • Archive.is • Google • Que faire ?) (consulté le ) Applet Java pour étudier la construction GOM de Curtis.

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.