Accueil🇫🇷Chercher

42-graphe de Grinberg

Le 42-graphe de Grinberg est, en théorie des graphes, un graphe 3-régulier possédant 42 sommets et 63 arêtes.

42-graphe de Grinberg
Image illustrative de l’article 42-graphe de Grinberg
Représentation planaire du 42-graphe de Grinberg.

Nombre de sommets 42
Nombre d'arêtes 63
Distribution des degrés 3-régulier
Rayon 6
Diamètre 7
Maille 4
Automorphismes 4 (Z/2Z×Z/2Z)
Nombre chromatique 3
Indice chromatique 3
Propriétés Cubique
Planaire
Sans triangle

Propriétés

Propriétés générales

Le diamètre du 42-graphe de Grinberg, l'excentricité maximale de ses sommets, est 7, son rayon, l'excentricité minimale de ses sommets, est 6 et sa maille, la longueur de son plus court cycle, est 4. Il s'agit d'un graphe 3-sommet-connexe et d'un graphe 3-arête-connexe, c'est-à-dire qu'il est connexe et que pour le rendre déconnecté il faut le priver au minimum de 3 sommets ou de 3 arêtes.

Le 42-graphe de Grinberg peut être construit à partir du 44-graphe de Grinberg en supprimant une certaine arête ainsi que ses deux extrémités[1].

Coloration

Le nombre chromatique du 42-graphe de Grinberg est 3. C'est-à-dire qu'il est possible de le colorer avec 3 couleurs de telle façon que deux sommets reliés par une arête soient toujours de couleurs différentes mais ce nombre est minimal. Il n'existe pas de 2-coloration valide du graphe.

L'indice chromatique du 42-graphe de Grinberg est 3. Il existe donc une 3-coloration des arêtes du graphe telles que deux arêtes incidentes à un même sommet soient toujours de couleurs différentes. Ce nombre est minimal.

Propriétés algébriques

Le groupe d'automorphismes du 42-graphe de Grinberg est un groupe abélien d'ordre 4 isomorphe à Z/2Z×Z/2Z, le groupe de Klein.

Le polynôme caractéristique de la matrice d'adjacence du 42-graphe de Grinberg est : .

Voir aussi

Liens internes

Liens externes

Références

  1. (en) Faulkner, G. B. and Younger, D. H. "Non-Hamiltonian Cubic Planar Maps." Discr. Math. 7, 67-74, 1974.
Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.