Accueil🇫🇷Chercher

Équation de Tsiolkovski

L'équation de Tsiolkovski est l'équation fondamentale de l'astronautique, reliant l'accroissement de vitesse au cours d'une phase de propulsion d'un astronef doté d'un moteur à réaction au rapport de sa masse initiale à sa masse finale.

On la doit à Constantin Tsiolkovski et, indépendamment, à Hermann Oberth.

Histoire

L'équation de Tsiolkovski[N 1] est considérée comme l'équation fondamentale de l'astronautiqueet_al.''_2014168,_col. 1§ 8.2.3_1-1">[1]. Son éponyme est Constantin Tsiolkovski (-), qui l'a déduite puis publiée en col. 1§ 1.1.1_5-0">[4] - [5] - [6].

Bien que cette équation soit souvent attribuée au grand penseur autodidacte Tsiolkovski, une forme de l'équation figure déjà dans un traité du mathématicien britannique Williams Moore (fl. c.-) paru en [7] - col. 1-2§ 1.1.1_9-0">[8] - [9] - [10] puis dans un article du général-major belge Casimir-Érasme Coquilhat (-) paru en [11] - [12] col. 2§ 1.1.1_14-0">[13] - [14] - [15].

L'Expérience de la barque, de Tsiolkovski

Expérience de la barque, de Tsiolkovski.

Afin de faire comprendre le principe de la propulsion à réaction, Constantin Tsiolkovski a proposé une fameuse expérience « de la barque ». Une personne se trouve démunie d'avirons dans une barque à l'écart de la rive. Elle veut rejoindre cette rive. Elle remarque que la barque est chargée d'une certaine quantité de pierres et a l'idée de lancer, une à une et le plus vivement possible, ces pierres dans la direction opposée à la rive. Effectivement, à la quantité de mouvement des pierres jetées dans un sens correspond une quantité de mouvement égale pour la barque dans l'autre sens.

Énoncé

L'équation de Tsiolkovski s'écrit :

, vectoriellement, ou , numériquement

où :

  • est la variation de vitesse de l'astronef entre la fin et le début de la phase propulsée considérée ;
  • est la vitesse d'éjection des gaz[N 2] ;
  • est la masse totale de l'astronef au début de la phase propulsée (indice i pour initial) ;
  • est la masse totale de l'astronef à l'issue de la phase propulsée (indice f pour final), exprimée dans la même unité que ;
  • est la fonction logarithme népérien.

Établissement

Démonstration

Cette équation est établie en intégrant l'équation de conservation de la quantité de mouvement entre le début et la fin de la phase propulsée sous les hypothèses suivantes :

  • l'étude du mouvement est faite dans un référentiel d'inertie ;
  • l'astronef n'est soumis qu'à la force de poussée fournie par ses moteurs, aucune autre action extérieure (gravité, efforts aérodynamiques) n'est prise en compte (voir à la fin de l'article pour la prise en compte de la gravité) ;
  • la vitesse d'éjection des gaz est constante.

À un instant donné, lorsque le vaisseau de masse se déplaçant à la vitesse éjecte une petite quantité d'ergol à la vitesse , on note sa variation de masse[N 3] et sa variation de vitesse. La variation de quantité de mouvement du système isolé (vaisseau + ergol éjecté) est nécessairement nulle, il vient donc :

.

Pour obtenir la variation de vitesse de l'astronef quand sa masse passe de à , on peut intégrer cette petite variation de vitesse :

.

Puisque , , la variation de vitesse du vaisseau a donc comme prévu la même direction que la projection des ergols et en sens opposé.

Commentaires

Il est souvent dit que pour trouver cette équation, il faut que le débit massique d'ergol soit constant pendant la phase de propulsion, mais ce n'est pas obligatoire, même si cela simplifie le travail d'intégration dans un premier temps.

L'équation est valable aussi bien lors d'une phase d'accélération (la poussée est dans la direction de la vitesse, est positif : c'est un accroissement de vitesse) que de décélération (la poussée est de direction opposée à la vitesse, est négatif : c'est une réduction de vitesse).

La différence entre la masse initiale et la masse finale correspond à la masse que la fusée a éjectée durant sa propulsion ; on l'appelle masse d'appui (« d'appui » parce que c'est la masse sur laquelle la fusée s'est appuyée pour se propulser). La projection de masse d'appui est d'ailleurs la seule façon de se déplacer dans l'espace (même la propulsion à voile solaire se fait par modification de la quantité de mouvement du vent solaire).

Pour les fusées thermo-chimiques (Ariane, Soyouz, navette, etc.), la masse d'appui est la masse des ergols (poudre, ou dioxygène et dihydrogène), laquelle est également source d'énergie chimique : c'est donc la masse d'appui elle-même qui contient l'énergie qui servira à sa propre éjection. Ce n'est plus le cas pour les moteurs ioniques (qui représentent sans doute l'avenir de la conquête spatiale). Ceux-ci sont régis tout pareillement par l'équation de Tsiolkovski, mais leur masse d'appui est constituée d'un gaz neutre (du xénon) ; c'est la très forte vitesse d'éjection de cette masse d'appui qui rend ces moteurs très économes en masse d'appui (il leur faut cependant une source d'énergie pour réaliser l'éjection). À ce titre, le fonctionnement des moteurs ioniques est comparable à celui des fusées à eau, dans lesquelles l'eau n'est utilisée que pour sa masse (l'énergie résidant dans l'air comprimé).

Dans le cas où la phase propulsée est réalisée au moyen de plusieurs étages fonctionnant successivement, la même équation de Tsiolkovski peut être utilisée pour le vol de chaque étage. On peut ainsi montrer l'intérêt de telles fusées à plusieurs étages. Voir l'exemple dans la section suivante.

Malgré l'apparente simplicité de cette équation et des hypothèses qui la sous-tendent, elle constitue une approximation utile au calcul des manœuvres de changement d'orbite, ces manœuvres étant qualifiées d'impulsionnelles, c’est-à-dire effectuées en un temps suffisamment bref pour que les hypothèses de l'équation de Tsiolkovski restent approximativement valables.

Temps nécessaire

Si le vaisseau utilise un débit massique d'ergol constant on peut écrire :

.

Or l'équation de Tsiolkovski peut s'écrire :

.

C'est-à-dire, en changeant de signe et en passant à l'exponentielle :

.

On en tire l'expression de qu'on reporte dans celle de :

.

Exemple

L'exemple qui suit a pour objet de montrer l'intérêt des fusées à plusieurs étages.

Soit une fusée à deux étages ayant les caractéristiques suivantes :

  • la masse d'ergols embarqués par chaque étage (premier étage : 100 tonnes ; deuxième étage : 20 tonnes) représente 10 fois sa masse à vide ;
  • la vitesse d'éjection des gaz est de 4 000 m/s ;

et supposons qu'elle emporte une charge utile de t. Résumons ces données dans un tableau :

ÉtageMasse d'ergols
(t)
Masse à vide
(t)
Masse totale
(t)
Vitesse d'éjection des gaz
(m/s)
Premier étage
Deuxième étage
Charge utile
Total fusée


On peut alors mener les calculs d'incréments de vitesse, comme suit, en employant deux fois l'équation de Tsiolkovski, aux étapes 3 et 6 :

Étape de calculFormuleMasse
(t)
Vitesse
(m/s)
1Masse à l'allumage du premier étage
2Masse à l'extinction du premier étage
3Incrément de vitesse du premier étage
4Masse à l'allumage du second étage
5Masse à l'extinction du second étage
6Incrément de vitesse du deuxième étage
7Vitesse finale


Par comparaison, une fusée comportant un seul étage avec la même quantité totale d'ergols (120 t) et la même masse à vide totale (12 t) imprimerait à une charge utile de même masse (t) une vitesse environ 30 % inférieure :

Étape de calculFormuleMasse
(t)
Vitesse
(m/s)
1Masse à l'allumage de l'étage (unique)
2Masse à l'extinction de l'étage
3Vitesse finale

Pertes par pesanteur

Les calculs ont été effectués dans l'hypothèse d'une absence de pesanteur (manœuvres en orbite). Lorsque cette gravité agit, un terme simple doit être ajouté à l'équation de Tsiolkovski. Celle-ci devient :

, vectoriellement, ou , si l'on projette l'équation radialement,

g étant l'accélération locale de la pesanteur et la durée de la propulsion (qui est également le temps durant lequel cette pesanteur agit). Le terme est appelé perte par pesanteur. On fait l'hypothèse que g est constant pendant la propulsion (alors que g diminue très légèrement avec l'altitude). En réalité, lors du décollage d'un lanceur de satellite, par exemple, la trajectoire s'incline progressivement pour diminuer l'action de la pesanteur et s'approcher peu à peu de l'horizontale (qui est la trajectoire de satellisation). Cette inclinaison diminue le travail (nuisible) de la pesanteur.

Notes et références

Notes

  1. L'équation de Tsiolkovskiet_al.''_2014168,_col. 1§ 8.2.3_1-0">[1] est aussi connue comme la formule de Tsiolkovskicol. 2§ 1.2_2-0">[2] ou la loi de Tsiolkovski§ 1.2.3_3-0">[3].
  2. À partir de la vitesse d'éjection des gaz , on définit une unité dérivée, souvent usitée en astronautique, appelée l’impulsion spécifique du moteur, par la relation , où est l’accélération de la pesanteur (). L’impulsion spécifique a la dimension d’un temps et s’exprime donc en secondes.
  3. Naturellement, . La masse d'ergol éjecté est donc .

Références

  1. et_al.''_2014168,_col. 1§ 8.2.3-1" class="mw-reference-text">Bonnal et al. 2014, § 8.2.3, p. 168, col. 1.
  2. col. 2§ 1.2-2" class="mw-reference-text">Bouchez 2010, § 1.2, p. 3, col. 2.
  3. § 1.2.3-3" class="mw-reference-text">Rax 2005, § 1.2.3, p. 29.
  4. col. 1§ 1.1.1-5" class="mw-reference-text">Macdonald, Norris et Spencer 2014, § 1.1.1, p. 2, col. 1.
  5. Macdonald, Norris et Spencer 2014, réf., p. 24, 1.
  6. Tsiolkovski 1903.
  7. Voir une mise en application de cette formule dans Journal des sciences militaires des armées de terre et de mer, tome II, 1826,
  8. col. 1-2§ 1.1.1-9" class="mw-reference-text">Macdonald, Norris et Spencer 2014, § 1.1.1, p. 2, col. 1-2.
  9. Macdonald, Norris et Spencer 2014, réf., p. 24, 2.
  10. Moore 1813.
  11. Mémoires de la Société royale des sciences de Liège, deuxième série, tome V, p. 315, .
  12. voir le lien ESA :
  13. col. 2§ 1.1.1-14" class="mw-reference-text">Macdonald, Norris et Spencer 2014, § 1.1.1, p. 2, col. 2.
  14. Macdonald, Norris et Spencer 2014, réf., p. 24, 3.
  15. Coquilhat 1873.

Voir aussi

Articles connexes

Publications originales

  • [Moore 1813] (en) Williams Moore, A treatise on the motion of rockets : to which is added an essay on navel gunnery, in theory and practice ; designed for the use of the army and navy, and in all places of military, naval and scientific instruction, Londres, .
  • [Coquilhat 1873] Casimir-Érasme Coquilhat, « Trajectoires des fusées volantes dans le vide », Mémoires de la Société royale des sciences de Liège, 2e série, t. V, , art. no 5, [2]−33 p. (OCLC 248870034, lire en ligne), réimpr. :
    • [Coquilhat 2018] Casimir-Érasme Coquilhat, Trajectoires des fusées volantes dans le vide : , Dijon, Nielrow, , 1re éd., 1 vol., 51 (ISBN 978-2-9559619-5-7, EAN 9782955961957, OCLC 1043726396, BNF 45456511).
  • [Tsiolkovski 1903] (ru) Konstantin Èduardovič Ciolkovskij, « Исследовние мировых пространств реактивными приборами » [« L'exploration de l'espace cosmique par des engins à réaction »], Научное обозрение, vol. 7, no 5, , p. 45-75 (résumé) — publication originale de l'article de Tsiolkovski énonçant l'équation fondamentale de l'astronautique.

Bibliographie

Document utilisé pour la rédaction de l’article : document utilisé comme source pour la rédaction de cet article.

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.