Théorème des sept cercles
En géométrie, le théorème des sept cercles est un théorème concernant un certain arrangement de sept cercles dans le plan euclidien.
Illustration dans le cas où les six cercles sont tangents intérieurement au septième.
Plus précisément, étant donné une chaîne de six cercles tous tangents (intérieurement ou extérieurement) à un septième cercle et chacun tangent extérieurement à ses deux voisins, les trois cordes joignant deux points de contact opposés sont concourantes. Bien que de nature élémentaire, ce théorème n'a été découvert qu'en 1974, par Evelyn, Money-Coutts et Tyrrell[1] - [2].
Le théorème des sept cercles peut être démontré à l'aide du théorème de Ceva[3] - [4] - [5], ou en utilisant une inversion[6].
Notes et références
- Evelyn (C.J.A.), Money-Coutts (G.B.) et Tyrrell (J.A.) (trad. Daniel Duclos), Le théorème des sept cercles, Cedic, , p. 41-48
- David Wells, Le dictionnaire Penguin des curiosités géométriques, Eyrolles, , p. 225
- (en) Stanley Rabinowitz, « The seven circles theorem », Pi Mu Epsilon Journal, no 8, , p. 441-449 (lire en ligne)
- Daniel Barthes, « Le théorème des 7 cercles d'Evelyn, Money-Coutts et Tyrrell », Hors série Tangente, no 36, , p. 36-38
- Daniel Barthes, « Le théorème des 7 cercles d'Evelyn, Money-Coutts et Tyrrell », Bibliothèque Tangente, no 36, , p. 72-76
- « Exercice 2: Inversion et théorème des sept cercles », sur http://www.mathwebs.com/
- Cundy, « The seven-circles theorem », The Mathematical Gazette, vol. 62, no 421, , p. 200–203 (DOI 10.2307/3616692, JSTOR 3616692, S2CID 250436639)
- C. J. A. Evelyn, G. B. Money-Coutts et J. A. Tyrrell, The Seven Circles Theorem and Other New Theorems, London, Stacey International, (ISBN 978-0-9503304-0-2)
- D. Wells, The Penguin Dictionary of Curious and Interesting Geometry, New York, Penguin Books, , 227–228 (ISBN 0-14-011813-6, lire en ligne )
Liens externes
- (en) Eric W. Weisstein, « Seven Circles Theorem », sur MathWorld.
- Animation geogebra interactive par Michael Borcherds ; cas où les six cercles sont tangents extérieurement au septième.
- Seven Circles Theorem at Cut-the-knot.
Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.