AccueilđŸ‡«đŸ‡·Chercher

Structure différentielle

En mathématiques, une structure différentielle à n dimensions (ou structure différentiable) sur un ensemble M transforme M en une variété différentielle à n dimensions, qui est une variété topologique avec une structure supplémentaire qui permet un calcul différentiel sur la variété. Si M est déjà une variété topologique, il est nécessaire que la nouvelle topologie soit identique à celle existante.

Pour un entier naturel n et un k qui peut ĂȘtre un entier non nĂ©gatif ou l'infini, une structure diffĂ©rentielle Ck Ă  n dimensions [1] est dĂ©finie Ă  l'aide d'un Ck - atlas, qui est un ensemble de bijections appelĂ©es cartes entre une collection de sous-ensembles de M (dont l'union est l'ensemble de M ), et un ensemble de sous-ensembles ouverts de :

qui sont Ck-compatibles (au sens défini ci-dessous):

Chacune de ces cartes fournit un moyen par lequel certains sous-ensembles du collecteur peuvent ĂȘtre considĂ©rĂ©s comme des sous-ensembles ouverts de mais l'utilitĂ© de cette notion dĂ©pend de la mesure dans laquelle ces notions concordent lorsque les domaines de deux de ces cartes se chevauchent.

Notes et références

  1. Hirsch, Morris, Differential Topology, Springer (1997), (ISBN 0-387-90148-5). for a general mathematical account of differential structures
Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplĂ©mentaires peuvent s’appliquer aux fichiers multimĂ©dias.