Accueil🇫🇷Chercher

Réseaux antagonistes génératifs

En intelligence artificielle, les réseaux antagonistes génératifs (RAG) parfois aussi appelés réseaux adverses génératifs (en anglais generative adversarial networks ou GANs) sont une classe d'algorithmes d'apprentissage non supervisé. Ces algorithmes ont été introduits par Goodfellow et al. 2014. Ils permettent de générer des images avec un fort degré de réalisme.

Réseaux antagonistes génératifs
Image générée par le réseau antagoniste génératif StyleGAN, à partir d'une analyse de portraits.
Type
Nom court
(en) GAN
Inventeur
Décrit par
Generative Adversarial Nets (d)

Un GAN est un modèle génératif où deux réseaux sont placés en compétition dans un scénario de théorie des jeux. Le premier réseau est le générateur, il génère un échantillon (ex. une image), tandis que son adversaire, le discriminateur essaie de détecter si un échantillon est réel ou bien s'il est le résultat du générateur. Ainsi, le générateur est entrainé avec comme but de tromper le discriminateur. L'apprentissage peut être modélisé comme un jeu à somme nulle[1].

L'apprentissage de ces réseaux est difficile en pratique, avec des problèmes importants de non convergence[2].

Histoire

L'invention du concept courant et sa réalisation en un prototype eurent lieu à Montréal, en 2014, lors d'une sortie au restaurant, par Ian Goodfellow[3]. Ses confrères doctorants célébraient leur diplôme et lui demandèrent assistance pour résoudre un problème de synthèse d'image[4].

En art

Le collectif d'artistes français Obvious[5] utilise les GANs comme outils de création artistique[6]. Les GANs génèrent une image fictive à partir d'une sélection d'images présentant des caractéristiques visuelles communes. Par la suite, l'image est améliorée, redéfinie pour être imprimée. La signature de leurs œuvres se caractérise par une formule mathématique indiquant la collaboration entre la technologie (associée à l'intelligence artificielle) et le processus artistique humain. Une de leurs œuvres, intitulée Portrait d'Edmond de Belamy, possiblement en l'honneur de Ian Goodfellow (dont le nom peut se traduire par « Bon ami »)[7], a été vendue 432 500 $ en . Le directeur de l'Institut des Carrières Artistiques (ICART) en France, Nicolas Laugero Lasserre, commente : « Leurs créations, sorte de collaboration entre l’humain et l’intelligence artificielle, marquent une césure et une prise de conscience dans l’histoire de l’art[8]. »

Au Japon, la société DataGrid utilise les réseaux antagonistes génératifs afin de générer des images de corps humains entiers[9].

En Espagne, l'artiste et programmeur Mario Klingemann utilise lui aussi les GANs dans sa démarche de création artistique avec son projet My Artificial Muse.[8] - [10]

De même, l'artiste Emmanuel Guez utilise les GANs pour alimenter une série de portraits pour son projet Photo_ID.[11] - [12]

Le groupe allemand Lindemann utilise les GANs pour le clip vidéo de Ich weiß es nicht.[13]

L'utilisation de ces algorithmes en art peut être associé à un courant nommé le « GANisme ».

Pour la recherche

En Russie, l'Institut de physique et de technologie de Moscou développe des GANs qui seraient capables de découvrir de nouvelles structures moléculaires dans le cadre de la recherche pharmaceutique. Ils seraient employés pour exploiter au mieux les propriétés spécifiques de molécules utilisées pour la fabrication de médicaments. L'existence de cette technologie pourrait apporter pour la recherche un gain de temps et de coûts, et améliorer l'efficacité ou réduire les effets secondaires de certains médicaments comme l'aspirine[14]. Sur le principe, les informations sur des composés aux propriétés médicinales reconnues sont intégrées dans le Generative Adversarial Autoencodeur, une extension du GAN, ajusté pour faire ressortir ces mêmes données[15].

Artur Kadurin, programmeur pour le groupe Mail.ru et conseiller indépendant chez Insilico Medecine, une entreprise américaine, annonce que : « Les GAN sont vraiment la ligne de front des neurosciences. Il est clair qu'ils peuvent être utilisés pour une gamme de tâches plus large que la génération d'images et de musique. Nous avons testé cette approche avec la bio-informatique et obtenu d'excellents résultats[14]. »

Cependant, bien que des progrès aient été notés dans l'apprentissage de ces GANs et qu'ils puissent apporter une meilleure compréhension en biologie et chimie, leur utilisation dans des essais cliniques n'est pas encore fiable[16].

Notes et références

  1. Goodfellow, Bengio et Courville 2016, p. 690.
  2. Goodfellow, Bengio et Courville 2016, p. 696.
  3. Steven Van Vaerenbergh, « Ian Goodfellow: Generative Adversarial Networks (NIPS 2016 tutorial) », (consulté le ).
  4. (en-US) Martin Giles, « The GANfather: The man who’s given machines the gift of imagination », sur MIT Technology Review (consulté le ).
  5. (en) « About Us - Obvious Art », sur obvious-art.com (consulté le )
  6. Christine Simeone, « La première œuvre d'art issue d'une intelligence artificielle vendues chez Christies », (consulté le )
  7. « Nouvelles Technologies - L’art fait par intelligence artificielle fait un tabac chez Christie's », RFI, (lire en ligne, consulté le )
  8. « Un tableau créé par algorithme mis à prix à 432 500 $ : une vente historique pour le collectif français Obvious ! », L'ADN, (lire en ligne, consulté le ).
  9. Bill Fassinou, « Une IA génère des images de corps entiers de personnes qui n'existent pas : Avec des modèles et des tenues photoréalistes », sur https://intelligence-artificielle.developpez.com/, (consulté le ).
  10. Mario Klingemann, « Portrait generating ChainGAN », (consulté le )
  11. « Photo_ID », sur Emmanuel Guez, (consulté le )
  12. Emmanuel Guez, « Photo_ID », sur writing machines, (consulté le )
  13. « LINDEMANN - Ich weiß es nicht (Official AI-Video) » (consulté le )
  14. (en) « Neural network learns to select potential anticancer drugs — Moscow Institute of Physics and Technology », sur mipt.ru (consulté le )
  15. Artur Kadurin, Alexander Aliper, Andrey Kazennov et Polina Mamoshina, « The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology », Oncotarget, vol. 8, no 7, (ISSN 1949-2553, lire en ligne, consulté le )
  16. Alex Zhavoronkov, « Artificial Intelligence for Drug Discovery, Biomarker Development, and Generation of Novel Chemistry », Molecular Pharmaceutics, vol. 15, no 10, , p. 4311–4313 (ISSN 1543-8384 et 1543-8392, DOI 10.1021/acs.molpharmaceut.8b00930, lire en ligne, consulté le ).

Bibliographie

Document utilisé pour la rédaction de l’article : document utilisé comme source pour la rédaction de cet article.

  • (en) Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville et Yoshua Bengio, « Generative Adversarial Networks », dans Advances in Neural Information Processing Systems 27, . Ouvrage utilisé pour la rédaction de l'article
  • (en) Ian J. Goodfellow, Yoshua Bengio et Aaron Courville, Deep Learning, MIT Press, (ISBN 0262035618, lire en ligne) [détail des éditions]. Document utilisé pour la rédaction de l’article
Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.