Protéine de liaison au lipopolysaccharide
La protéine de liaison au lipopolysaccharide (ou Lipopolysaccharide Binding Protein) est une protéine qui, chez l’homme, est codée par le gène LBP[1] situé sur le chromosome 20 humain.
La LBP est une protéine soluble de phase aiguë qui se lie au lipopolysaccharide bactérien (ou LPS) pour induire des réponses immunitaires en présentant le LPS à d'importants récepteurs de reconnaissance du motif de la surface cellulaire appelés CD14 et TLR4[2]. Modèle:PBB Summary
La protéine codée par ce gène est impliquée dans la réponse immunologique en phase aiguë aux infections bactériennes à Gram négatif. Les bactéries à Gram négatif contiennent un glycolipide, un lipopolysaccharide (LPS), sur leur paroi cellulaire externe. Avec la protéine augmentant la perméabilité bactéricide (BPI ou batericidal permeability-increasing protein), la protéine codée se lie au LPS et interagit avec le récepteur CD14, jouant probablement un rôle dans la régulation des réponses des monocytes dépendant du LPS. Des études chez la souris suggèrent que la protéine codée est nécessaire à la réponse rapide du LPS en phase aiguë, mais pas à la clairance du LPS de la circulation. Cette protéine fait partie d'une famille de protéines structurellement et fonctionnellement liées, notamment la BPI, la protéine de transfert de cholestérol ester plasmatique (CETP) et la protéine de transfert de phospholipides (PLTP). Enfin, ce gène se trouve sur le chromosome 20, immédiatement en aval du gène BPI.
Les interactions
Il a été démontré que la protéine liant les lipopolysaccharides interagissait avec CD14,TLR2, TLR4 et le co-récepteur MD-2[3] - [4] - [5].
Références
- « The genes for the lipopolysaccharide binding protein (LBP) and the bactericidal permeability increasing protein (BPI) are encoded in the same region of human chromosome 20 », Genomics, vol. 15, no 1,‎ , p. 188–90 (PMID 8432532, DOI 10.1006/geno.1993.1030)
- « Essential roles of CD14 and lipopolysaccharide-binding protein for activation of toll-like receptor (TLR)2 as well as TLR4 Reconstitution of TLR2- and TLR4-activation by distinguishable ligands in LPS preparations », Eur. J. Biochem., vol. 268, no 16,‎ , p. 4580–9 (PMID 11502220, DOI 10.1046/j.1432-1327.2001.02385.x)
- Thomas, Kapoor Mili, Sharma Shilpi et Bausinger Huguette, « Evidence of a trimolecular complex involving LPS, LPS binding protein and soluble CD14 as an effector of LPS response », FEBS Lett., Netherlands, vol. 531, no 2,‎ , p. 184–8 (ISSN 0014-5793, PMID 12417309, DOI 10.1016/S0014-5793(02)03499-3)
- Yu et Wright S D, « LPS-dependent interaction of Mac-2-binding protein with immobilized CD14 », J. Inflamm., UNITED STATES, vol. 45, no 2,‎ , p. 115–25 (ISSN 1078-7852, PMID 7583357)
- Erridge, Pridmore, Eley et Stewart, « Lipopolysaccharides of Bacteroides fragilis, Chlamydia trachomatis and Pseudomonas aeruginosa signal via toll-like receptor 2. », Journal of Medical Microbiology, vol. 53, no Pt 8,‎ , p. 735–40 (PMID 15272059, DOI 10.1099/jmm.0.45598-0)
Lectures complémentaires
- Schumann RR, Leong SR, Flaggs GW, et al. (1990). "Structure and function of lipopolysaccharide binding protein". Science. 249 (4975): 1429–31. Bibcode:1990Sci...249.1429S. doi:10.1126/science.2402637. .
- Wilde CG, Seilhamer JJ, McGrogan M, et al. (1994). "Bactericidal/permeability-increasing protein and lipopolysaccharide (LPS)-binding protein. LPS binding properties and effects on LPS-mediated cell activation". J. Biol. Chem. 269 (26): 17411–6. .
- Park CT, Wright SD (1996). "Plasma lipopolysaccharide-binding protein is found associated with a particle containing apolipoprotein A-I, phospholipid, and factor H-related proteins". J. Biol. Chem. 271 (30): 18054–60. doi:10.1074/jbc.271.30.18054. .
- Nanbo A, Nishimura H, Nagasawa S (1997). "Lipopolysaccharide binding protein from normal human plasma purified with high efficiency". Protein Expr. Purif. 10 (1): 55–60. doi:10.1006/prep.1996.0712. .
- Hubacek JA, Büchler C, Aslanidis C, Schmitz G (1997). "The genomic organization of the genes for human lipopolysaccharide binding protein (LBP) and bactericidal permeability increasing protein (BPI) is highly conserved". Biochem. Biophys. Res. Commun. 236 (2): 427–30. doi:10.1006/bbrc.1997.6970. .
- Jack RS, Fan X, Bernheiden M, et al. (1997). "Lipopolysaccharide-binding protein is required to combat a murine gram-negative bacterial infection". Nature. 389 (6652): 742–5. Bibcode:1997Natur.389..742J. doi:10.1038/39622. .
- Kirschning CJ, Au-Young J, Lamping N, et al. (1998). "Similar organization of the lipopolysaccharide-binding protein (LBP) and phospholipid transfer protein (PLTP) genes suggests a common gene family of lipid-binding proteins". Genomics. 46 (3): 416–25. doi:10.1006/geno.1997.5030. .
- Beamer LJ, Carroll SF, Eisenberg D (1998). "The BPI/LBP family of proteins: a structural analysis of conserved regions". Protein Sci. 7 (4): 906–14. doi:10.1002/pro.5560070408. PMC 2143972. .
- Sato M, Saeki Y, Tanaka K, Kaneda Y (1999). "Ribosome-associated protein LBP/p40 binds to S21 protein of 40S ribosome: analysis using a yeast two-hybrid system". Biochem. Biophys. Res. Commun. 256 (2): 385–90. doi:10.1006/bbrc.1999.0343. .
- Vreugdenhil AC, Dentener MA, Snoek AM, et al. (1999). "Lipopolysaccharide binding protein and serum amyloid A secretion by human intestinal epithelial cells during the acute phase response". Journal of Immunology. 163 (5): 2792–8. .
- Vesy CJ, Kitchens RL, Wolfbauer G, et al. (2000). "Lipopolysaccharide-Binding Protein and Phospholipid Transfer Protein Release Lipopolysaccharides from Gram-Negative Bacterial Membranes". Infect. Immun. 68 (5): 2410–7. doi:10.1128/IAI.68.5.2410-2417.2000. PMC 97439. .
- Labéta MO, Vidal K, Nores JE, et al. (2000). "Innate Recognition of Bacteria in Human Milk Is Mediated by a Milk-Derived Highly Expressed Pattern Recognition Receptor, Soluble Cd14". J. Exp. Med. 191 (10): 1807–12. doi:10.1084/jem.191.10.1807. PMC 2193148. .
- Dentener MA, Vreugdenhil AC, Hoet PH, et al. (2000). "Production of the acute-phase protein lipopolysaccharide-binding protein by respiratory type II epithelial cells: implications for local defense to bacterial endotoxins". Am. J. Respir. Cell Mol. Biol. 23 (2): 146–53. doi:10.1165/ajrcmb.23.2.3855. .
- Nagaoka I, Hirota S, Niyonsaba F, et al. (2001). "Cathelicidin family of antibacterial peptides CAP18 and CAP11 inhibit the expression of TNF-alpha by blocking the binding of LPS to CD14(+) cells". Journal of Immunology. 167 (6): 3329–38. doi:10.4049/jimmunol.167.6.3329. .
- Gutsmann T, Müller M, Carroll SF, et al. (2001). "Dual Role of Lipopolysaccharide (LPS)-Binding Protein in Neutralization of LPS and Enhancement of LPS-Induced Activation of Mononuclear Cells". Infect. Immun. 69 (11): 6942–50. doi:10.1128/IAI.69.11.6942-6950.2001. PMC 100074. .
- Iovine N, Eastvold J, Elsbach P, et al. (2002). "The carboxyl-terminal domain of closely related endotoxin-binding proteins determines the target of protein-lipopolysaccharide complexes". J. Biol. Chem. 277 (10): 7970–8. doi:10.1074/jbc.M109622200. .
- Deloukas P, Matthews LH, Ashurst J, et al. (2002). "The DNA sequence and comparative analysis of human chromosome 20". Nature. 414 (6866): 865–71. Bibcode:2001Natur.414..865D. doi:10.1038/414865a. .
- Kaden J, Zwerenz P, Lambrecht HG, Dostatni R (2002). "Lipopolysaccharide-binding protein as a new and reliable infection marker after kidney transplantation". Transpl. Int. 15 (4): 163–72. doi:10.1007/s00147-002-0392-2. .
- Reyes O, Vallespi MG, Garay HE, et al. (2002). "Identification of single amino acid residues essential for the binding of lipopolysaccharide (LPS) to LPS binding protein (LBP) residues 86-99 by using an Ala-scanning library". J. Pept. Sci. 8 (4): 144–50. doi:10.1002/psc.375. .
Liens externes
Cet article incorpore le texte de la National Library of Medicine des États-Unis , qui est du domaine public .