Processus de naissance et de mort
Les processus de naissance et de mort sont des cas particuliers de processus de Markov en temps continu où les transitions d'état sont de deux types seulement : les «naissances» où l'état passe de n à n+1 et les morts où l'état passe de n à n-1.
Ces processus ont de nombreuses applications en dynamique des populations et dans la théorie des files d'attente. Le processus est spécifié par les taux de naissance et les taux de mortalité .
Le générateur
On suppose que . Si est la probabilité de trouver le système dans l'état (avec ) à l'instant , alors
Autrement dit,
où est le générateur défini par
Si plus généralement on note la probabilité d'être dans l'état à l'instant sachant que le système était dans l'état à l'instant , alors
et (la matrice identité).
Exemples
Le processus de Yule correspond à et .
Le processus linéaire de naissance et de mort correspond à et .
La file M/M/1 correspond à pour et pour .
Propriétés
Supposons que pour tout . Le processus de naissance et de mort a une durée de vie infinie si et seulement si
est infini.
Par exemple, le processus de Yule a une durée de vie infinie car la série harmonique diverge.
On définit une suite de polynômes telle que et . Autrement dit,
et
pour tout . Ces polynômes sont orthogonaux par rapport à une mesure de probabilité sur l'intervalle et
Cette formule est due à Karlin et McGregor.
Exemples
- Si et pour tout (file d'attente M/M/), alors ;\lambda /\mu ),}
où les sont les polynômes de Charlier. Les polynômes sont orthogonaux par rapport à la distribution de Poisson qui attribue le poids sur les entiers
- Si et avec , alors il faut distinguer trois cas.
1er cas : Si , alors
où les sont les polynômes de Meixner. Ainsi, les polynômes sont orthogonaux par rapport à la distribution de probabilités qui attribue le poids
aux points pour
2e cas : Si , alors
- ;\beta ,{\frac {\mu }{\lambda }}\right).}
Les polynômes sont orthogonaux par rapport à la distribution de probabilités qui attribue le poids
aux points pour
3e cas : Si , alors
où les sont des polynômes de Laguerre généralisés. Les polynômes sont orthogonaux par rapport à la distribution de probabilités sur de densité donnée par la distribution Gamma :
Processus absorbants
Lorsque , l'état 0 est absorbant. Ce cas intervient souvent en dynamique des populations et correspond à l'extinction de la population. Notons la probabilité que le système soit absorbé en 0 au bout d'un temps fini, si l'on part de l'état . Posons
Si , alors pour tout .
Si , alors
Par exemple, pour le processus linéaire de naissance et de mort, on voit que . L'extinction est certaine lorsque .
Supposons . Notons l'espérance du temps d'extinction lorsque le système part de l'état . Alors
et
pour .
Par exemple, pour le processus linéaire de naissance et de mort avec , on trouve que
Lorsque , on a
Méthode des fonctions génératrices
Lorsque les taux de naissance et de mort sont des polynômes en , on peut faire le lien avec certaines équations aux dérivées partielles. Ainsi, pour le processus linéaire de naissance et de mort, posons
On montre que
En utilisant la méthode des caractéristiques, on en déduit que
si l'on part de l'état à . On en déduit que l'espérance de la population au temps est
On en déduit aussi la probabilité d'extinction au temps :
si . En particulier, si , on a quand .
Quasi-processus de naissance et de mort
Les quasi-processus de naissance et de mort sont les processus de Markov en temps continu sur un espace d'états discret dont le générateur est tridiagonal par blocs :
Articles connexes
Bibliographie
- P. Désesquelles, Les processus de Markov en biologie, sociologie, géologie, chimie, physique et applications industrielles, Ellipses, 2016.
- W. Feller, Die Grundlagen der Volterraschen Theorie des Kampfes ums Dasein in Wahrscheinlichkeitstheoretischer Behandlung, Acta Biotheoretica no 5, 1939, p. 11-40.
- A. Hillion, Les théories mathématiques des populations, PUF, 1986.
- S. Karlin, J.L. McGregor, The differential equations of birth-and-death processes, and the Stieltjes moment problem, Transactions of the American Mathematical Society, 1957.
- S. Méléard, Modèles aléatoires en écologie et évolution, Springer, 2016.
- Ph. Picard, Sur les modèles stochastiques logistiques en démographie, Ann. Inst. Henri Poincaré no 2, 1965, p. 151-172
- W. Scoutens, Stochastic Processes and Orthogonal Polynomials, Springer, 2000.
- B. Sericola, Chaînes de Markov - Théorie, algorithmes et applications, Lavoisier, 2013.
Cet article est issu de
wikipedia. Text licence:
CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.