Nullité de la dérivée covariante du tenseur métrique
La nullité de la dérivée covariante du tenseur métrique d'une variété riemannienne exprime le fait que la même mesure est appliquée en tout point de la variété. En termes mathématiques, elle s'exprime sous la forme : où représente les composantes de la dérivée du tenseur. Cette propriété peut se démontrer de deux façons :
- par un raisonnement mathématique, en posant explicitement le calcul avec les coefficients de Christoffel ;
- par un raisonnement physique, dans le cadre de la relativité générale.
Détail du raisonnement physique : le principe d'équivalence stipule qu'il est toujours possible de trouver un référentiel lorentzien local où les dérivées premières de la métrique sont nulles, c'est-à-dire : . Or, les coefficients de Christoffel ne dépendent que des dérivées premières de la métrique, on a donc : et .
Cette relation tensorielle étant vraie dans tout référentiel lorentzien local, d'après le principe d'équivalence, elle l'est également dans un référentiel quelconque.