Nombre premier factoriel
En mathématiques, un nombre premier factoriel est un nombre qui est égal à une factorielle plus 1 ou moins 1 et qui est aussi un nombre premier. Les dix plus petits nombres premiers factoriels sont :
- 1! + 1, 2! + 1, 3! − 1, 3! + 1, 4! − 1, 6! − 1, 7! − 1, 11! + 1, 12! − 1 et 14! − 1 (suites  A002981 et  A002982 de l'OEIS), soit
Les nombres premiers factoriels ont un intérêt pour la théorie des nombres car ils signalent quelquefois la fin ou le début d'une longue suite de nombres composés consécutifs. Par exemple, le plus petit nombre premier supérieur à 479 001 599 est 479 001 629.
Ceci s'explique par le fait que n! ± k est composé pour 2 ≤ k ≤ n, car il est multiple de k, tout comme l'est n!. En revanche, n! ± 1 peut être premier (ce sera alors un nombre premier factoriel).
Voir aussi
Article connexe
Lien externe
(en) Eric W. Weisstein, « Factorial prime », sur MathWorld
Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.