Nombre premier de Fibonacci
D'aprés Robokay:
il existe une infineté de nombre premiers car il existe une infineté de nombres complexes ce qui ont des diviseurs premiers
Primalité des nombres de Fibonacci
On ignore s'il existe une infinité de nombres de Fibonacci premiers. On sait que divise (voir la propriété 6 dans le § « Propriétés » de l'article sur la suite de Fibonacci), et donc que, pour tout n > 4, si est premier, alors n est premier, mais la réciproque est fausse ( est le premier contre-exemple non trivial). En , le plus grand nombre premier de Fibonacci connu est [1] et le plus grand nombre de Fibonacci probablement premier connu est [2], qui a 606 974 chiffres décimaux.
En 1964, Ronald Graham a donné une méthode pour construire des suites sans nombres premiers (en), c'est-à -dire des suites (Tn) vérifiant en même temps les trois conditions suivantes :
- Tn+2 = Tn+1 + Tn ;
- Tn et Tn+1 sont premiers entre eux (ils n'ont aucun diviseur commun) ;
- aucun Tn n'est premier.
Dans la suite qu'il proposait (suite A083103 de l'OEIS), les deux termes initiaux comportaient 34 chiffres décimaux[3]. En affinant sa méthode, on a réussi à construire de telles suites avec deux termes initiaux plus petits :
- 17 chiffres : suite  A083105 (Donald Knuth, 1990) ;
- 17 et 16 chiffres : suite  A083216 (Herbert Wilf, 1990) ;
- 12 et 11 chiffres : suite  A082411 (John Nicol, 1999) ;
- 12 et 11 chiffres, mais plus petits (Maxim Vsemirnov, 2004[4]).
Notes et références
- Cet article est partiellement ou en totalité issu de l'article intitulé « Suite de Fibonacci » (voir la liste des auteurs).
- (en) Fibonacci Number, sur le site Prime Pages.
- Henri Lifchitz, juillet 2014, PRP Records et suite  A001605 de l'OEIS.
- On ne sait en fait pas si tous les termes de cette suite sont effectivement composés, à cause d'une erreur de calcul. La suite  A083104 en est la version rectifiée en 1990 par Knuth.
- (en) M. Vsemirnov, « A New Fibonacci-like Sequence of Composite Numbers », Journal of Integer Sequences, vol. 7, no 04.3.7,‎ (lire en ligne).